2021-10-21 20:31:03 +00:00
|
|
|
// WS30 VERTEX SHADER
|
|
|
|
// -*-C++-*-
|
|
|
|
#version 120
|
|
|
|
|
|
|
|
// Shader that uses OpenGL state values to do per-pixel lighting
|
|
|
|
//
|
|
|
|
// The only light used is gl_LightSource[0], which is assumed to be
|
|
|
|
// directional.
|
|
|
|
//
|
|
|
|
// Colors are not assigned in this shader, as they will come from
|
|
|
|
// the landclass lookup in the fragment shader.
|
|
|
|
// Haze part added by Thorsten Renk, Oct. 2011
|
|
|
|
|
|
|
|
|
|
|
|
#define MODE_OFF 0
|
|
|
|
#define MODE_DIFFUSE 1
|
|
|
|
#define MODE_AMBIENT_AND_DIFFUSE 2
|
|
|
|
|
|
|
|
attribute vec2 orthophotoTexCoord;
|
|
|
|
|
|
|
|
// The constant term of the lighting equation that doesn't depend on
|
|
|
|
// the surface normal is passed in gl_{Front,Back}Color. The alpha
|
|
|
|
// component is set to 1 for front, 0 for back in order to work around
|
|
|
|
// bugs with gl_FrontFacing in the fragment shader.
|
WS30 : terrain shaders from vs
Squashed commit of the following:
commit e7c89ffb600d1bf5cee2936b7dbff31089452745
Author: vs <vs2009@mail.com>
Date: Fri Nov 5 23:44:35 2021 +1000
WS30 shaders:
- WS30-ALS and WS30-ALS-ultra fargment and vertex shaders: Fix NDotL being used before it is initialised. Rename varying diffuse_term from WS2 terrain shaders to light_diffuse_comp as the full diffuse term is not calculated until the fragment shader.
- WS30-ALS-ultra.frag: Enable haze and lighting by default.
commit 9b55ad051a8d7f3568dfdcd6890655942999e8d0
Author: vs <vs2009@mail.com>
Date: Wed Nov 3 22:50:29 2021 +1000
WS30 terrain shaders: ws30-ALS-ultra.frag
- For power users looking to profile transitions on different GPUs: The test phase toggles and settings for different transition options are available at the start of ws30-ALS-ultra.frag, along with explanations, and how to get accurate profile results on different GPUs. Just need to change a few numbers, save, and debug menu > configure dev extensions > reload shaders to activate.
- Note: at a minimum, small scale transitions to remove the 'squareness' due to the landclass texture need to be used even on old GPUs.
- All transition options are off by default. ws30-ALS-ultra.frag is active when the terrain quality slider is set to Ultra. Start by turning one of small or large scale transitions.
- Texture mixing for small and large scale transitions don't work together, to reduce texture lookups. Turn one off when using the other.
- Landclasses with contrasting colours make transition issues more visble. The driver control panel texture filtering settings reduces issues with seams at landclass borders.
- ws30-ALS.frag is left untouched in this commit, for comparison and reviewing. ws30-ALS.frag is active when terrain quality slider is set High to Low.
Changes:
- Implement large scale transitions and small scale de-pixelisation of landclasses by searching the landclass texture. Several options and quality levels are available for profiling on different GPUs.
- There are fixes for multiple issues dealing with texture rendering.
Changelog:
1.0 - Small-scale transitions:
-- a) Remove squareness due to landclass texture by growing neighbour landclasses onto others depending on a growth priority. This feature uses 2 landclass texture lookups, 1 noise lookup, and only 1 ground texture lookup per point. For now the growth priority is simply the landclass id number. If this approach is used, growth priority would be a materials parameter. A way to set default growth priority by landclass via an xml file would be needed. There is flickering noise at long ranges due to small scale detail in the noise function used for growing landclasses. Partial derivative are used to turn off the feature, but turning off the feature too quickly still shows some square ness in distant landclasses.
-- b) Reduce squareness due to landclass texture by mixing base textures of neighbouring landclasses. This is not perfect, as perfectly square shapes turn into perfectly square shapes with perfectly smudged edges. This uses 2 landclass texture lookups, and 2-3 ground texture lookups.
-- c) - a) and b) can be run at once. This option will also fade the growths gradually with distance. This uses 2 landclass texture lookups, 1 noise lookup, and 2-3 ground texture lookups.
2.0 - Large scale transitions:
-- a) Implemented by searching the landclass texture. The search pattern is current landlcass for the fragment at the center, and n search points in four directions along the s and t axes forming a cross. The search directions are configurable in the code, adn a minimum of 3 directions are needed. The step size is configurable. The fewer the steps, the larger the bands formed in the transitions. There are 1+4*n landclass lookups per n search points. e.g. 1 search point: 5 lookups, 4 search points:17 lookups, 10 search points: 41 lookups.
-- b) An option to dither the transition bands by adding mixing noise is availble. This breaks up the visual impact of bands.
-- c) There is some functionality to grow neighbours on a large scale. No growth priority is used - bothe neighbours will lose definition. A more advanced implementation can use several material parameters to define the nature of the transition: some transitions are very sharp in nature like with agriculture, other transitions can be very gradual, some transitions are patchy. Materials can have competing parameters, to determine which neighbour grows or has a shorter transition on one side. These parameters will need a way of specifying defaults by landclass.
3.0 - Fixes
-- a) - Fix seams at landclass borders. These are caused by different ground textures being stretched by different amounts. At the border, an incorrect mip-map level is looked up, causing a colour disontinuity in addition to the difference between landclasses. The reason the mip-map LoD is incorrect is because GPUs use 4 neighbouring pixels to figure out how fast texture coordinates change with respect to screenspace x and y (i.e. partial derivaitves), and use that information to pick a mip-map level. At a landlcass border, this calculation is incorrect.
-- b) Fix seams at borders caused by the current detiling function. This is due to the detiling function changing the amount textures are stretched, as well as messing with coordinates.
-- c) The solution to a) and b) is to use textureGrad() to lookup textures. It allows specifying partial derivatives. The partial derivatives for the normal texture coordinates are obtained by built-in funcions, and these need to be multiplied by each stretching factor, including different stretching inside conditionals. All future texture lookups that use custom coordinate scaling/manipulation need to use textureGrad. This fixes various signs of incorrect mip-map lod with distance and view angle (textures look stable/solid).
-- d) Fix ground textures being stretched out of proportion in the detiling function. This is caused by tile dimensions not being unequal and texture stretching.
2021-11-05 19:59:32 +00:00
|
|
|
varying vec4 light_diffuse_comp;
|
2021-10-21 20:31:03 +00:00
|
|
|
varying vec3 normal;
|
|
|
|
varying vec3 relPos;
|
|
|
|
varying vec2 orthoTexCoord;
|
|
|
|
varying vec4 ecPosition;
|
|
|
|
|
|
|
|
varying float yprime_alt;
|
|
|
|
varying float mie_angle;
|
|
|
|
|
|
|
|
uniform int colorMode;
|
|
|
|
uniform float hazeLayerAltitude;
|
|
|
|
uniform float terminator;
|
|
|
|
uniform float terrain_alt;
|
|
|
|
uniform float avisibility;
|
|
|
|
uniform float visibility;
|
|
|
|
uniform float overcast;
|
|
|
|
uniform float ground_scattering;
|
|
|
|
uniform float moonlight;
|
|
|
|
|
|
|
|
void setupShadows(vec4 eyeSpacePos);
|
|
|
|
|
|
|
|
// This is the value used in the skydome scattering shader - use the same here for consistency?
|
|
|
|
const float EarthRadius = 5800000.0;
|
|
|
|
const float terminator_width = 200000.0;
|
|
|
|
|
|
|
|
|
|
|
|
float earthShade;
|
|
|
|
|
|
|
|
float light_func (in float x, in float a, in float b, in float c, in float d, in float e)
|
|
|
|
{
|
|
|
|
//x = x - 0.5;
|
|
|
|
|
|
|
|
// use the asymptotics to shorten computations
|
|
|
|
if (x < -15.0) {return 0.0;}
|
|
|
|
|
|
|
|
return e / pow((1.0 + a * exp(-b * (x-c)) ),(1.0/d));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void main()
|
|
|
|
{
|
|
|
|
|
|
|
|
vec4 light_diffuse;
|
|
|
|
vec4 light_ambient;
|
|
|
|
vec3 shadedFogColor = vec3(0.55, 0.67, 0.88);
|
|
|
|
vec3 moonLightColor = vec3 (0.095, 0.095, 0.15) * moonlight;
|
|
|
|
|
|
|
|
|
|
|
|
//float yprime_alt;
|
|
|
|
float yprime;
|
|
|
|
float lightArg;
|
|
|
|
float intensity;
|
|
|
|
float vertex_alt;
|
|
|
|
float scattering;
|
|
|
|
|
|
|
|
// this code is copied from default.vert
|
|
|
|
|
2021-10-24 20:36:39 +00:00
|
|
|
ecPosition = gl_ModelViewMatrix * gl_Vertex;
|
2021-10-21 20:31:03 +00:00
|
|
|
gl_Position = ftransform();
|
|
|
|
gl_TexCoord[0] = gl_TextureMatrix[0] * gl_MultiTexCoord0;
|
|
|
|
orthoTexCoord = orthophotoTexCoord;
|
|
|
|
normal = gl_NormalMatrix * gl_Normal;
|
|
|
|
|
|
|
|
// here start computations for the haze layer
|
|
|
|
// we need several geometrical quantities
|
|
|
|
|
|
|
|
// first current altitude of eye position in model space
|
|
|
|
vec4 ep = gl_ModelViewMatrixInverse * vec4(0.0,0.0,0.0,1.0);
|
|
|
|
|
|
|
|
// and relative position to vector
|
|
|
|
relPos = gl_Vertex.xyz - ep.xyz;
|
|
|
|
|
|
|
|
// unfortunately, we need the distance in the vertex shader, although the more accurate version
|
|
|
|
// is later computed in the fragment shader again
|
|
|
|
float dist = length(relPos);
|
|
|
|
|
|
|
|
// altitude of the vertex in question, somehow zero leads to artefacts, so ensure it is at least 100m
|
|
|
|
vertex_alt = max(gl_Vertex.z,100.0);
|
|
|
|
scattering = ground_scattering + (1.0 - ground_scattering) * smoothstep(hazeLayerAltitude -100.0, hazeLayerAltitude + 100.0, vertex_alt);
|
|
|
|
|
|
|
|
|
|
|
|
// branch dependent on daytime
|
|
|
|
|
|
|
|
if (terminator < 1000000.0) // the full, sunrise and sunset computation
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
|
|
// establish coordinates relative to sun position
|
|
|
|
|
|
|
|
vec3 lightFull = (gl_ModelViewMatrixInverse * gl_LightSource[0].position).xyz;
|
|
|
|
vec3 lightHorizon = normalize(vec3(lightFull.x,lightFull.y, 0.0));
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// yprime is the distance of the vertex into sun direction
|
|
|
|
yprime = -dot(relPos, lightHorizon);
|
|
|
|
|
|
|
|
// this gets an altitude correction, higher terrain gets to see the sun earlier
|
|
|
|
yprime_alt = yprime - sqrt(2.0 * EarthRadius * vertex_alt);
|
|
|
|
|
|
|
|
// two times terminator width governs how quickly light fades into shadow
|
|
|
|
// now the light-dimming factor
|
|
|
|
earthShade = 0.6 * (1.0 - smoothstep(-terminator_width+ terminator, terminator_width + terminator, yprime_alt)) + 0.4;
|
|
|
|
|
|
|
|
// parametrized version of the Flightgear ground lighting function
|
|
|
|
lightArg = (terminator-yprime_alt)/100000.0;
|
|
|
|
|
|
|
|
// directional scattering for low sun
|
|
|
|
if (lightArg < 10.0)
|
|
|
|
{mie_angle = (0.5 * dot(normalize(relPos), normalize(lightFull)) ) + 0.5;}
|
|
|
|
else
|
|
|
|
{mie_angle = 1.0;}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
light_diffuse.b = light_func(lightArg, 1.330e-05, 0.264, 3.827, 1.08e-05, 1.0);
|
|
|
|
light_diffuse.g = light_func(lightArg, 3.931e-06, 0.264, 3.827, 7.93e-06, 1.0);
|
|
|
|
light_diffuse.r = light_func(lightArg, 8.305e-06, 0.161, 3.827, 3.04e-05, 1.0);
|
|
|
|
light_diffuse.a = 1.0;
|
|
|
|
light_diffuse = light_diffuse * scattering;
|
|
|
|
|
|
|
|
|
|
|
|
light_ambient.r = light_func(lightArg, 0.236, 0.253, 1.073, 0.572, 0.33);
|
|
|
|
light_ambient.g = light_ambient.r * 0.4/0.33;
|
|
|
|
light_ambient.b = light_ambient.r * 0.5/0.33;
|
|
|
|
light_ambient.a = 1.0;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// correct ambient light intensity and hue before sunrise
|
|
|
|
if (earthShade < 0.5)
|
|
|
|
{
|
|
|
|
//light_ambient = light_ambient * (0.7 + 0.3 * smoothstep(0.2, 0.5, earthShade));
|
|
|
|
intensity = length(light_ambient.xyz);
|
|
|
|
|
|
|
|
light_ambient.rgb = intensity * normalize(mix(light_ambient.rgb, shadedFogColor, 1.0 -smoothstep(0.4, 0.8,earthShade) ));
|
|
|
|
light_ambient.rgb = light_ambient.rgb + moonLightColor * (1.0 - smoothstep(0.4, 0.5, earthShade));
|
|
|
|
|
|
|
|
intensity = length(light_diffuse.xyz);
|
|
|
|
light_diffuse.rgb = intensity * normalize(mix(light_diffuse.rgb, shadedFogColor, 1.0 -smoothstep(0.4, 0.7,earthShade) ));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// the haze gets the light at the altitude of the haze top if the vertex in view is below
|
|
|
|
// but the light at the vertex if the vertex is above
|
|
|
|
|
|
|
|
vertex_alt = max(vertex_alt,hazeLayerAltitude);
|
|
|
|
|
|
|
|
if (vertex_alt > hazeLayerAltitude)
|
|
|
|
{
|
|
|
|
if (dist > 0.8 * avisibility)
|
|
|
|
{
|
|
|
|
vertex_alt = mix(vertex_alt, hazeLayerAltitude, smoothstep(0.8*avisibility, avisibility, dist));
|
|
|
|
yprime_alt = yprime -sqrt(2.0 * EarthRadius * vertex_alt);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
vertex_alt = hazeLayerAltitude;
|
|
|
|
yprime_alt = yprime -sqrt(2.0 * EarthRadius * vertex_alt);
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
else // the faster, full-day version without lightfields
|
|
|
|
{
|
|
|
|
//vertex_alt = max(gl_Vertex.z,100.0);
|
|
|
|
|
|
|
|
earthShade = 1.0;
|
|
|
|
mie_angle = 1.0;
|
|
|
|
|
|
|
|
if (terminator > 3000000.0)
|
|
|
|
{light_diffuse = vec4 (1.0, 1.0, 1.0, 0.0);
|
|
|
|
light_ambient = vec4 (0.33, 0.4, 0.5, 0.0); }
|
|
|
|
else
|
|
|
|
{
|
|
|
|
|
|
|
|
lightArg = (terminator/100000.0 - 10.0)/20.0;
|
|
|
|
light_diffuse.b = 0.78 + lightArg * 0.21;
|
|
|
|
light_diffuse.g = 0.907 + lightArg * 0.091;
|
|
|
|
light_diffuse.r = 0.904 + lightArg * 0.092;
|
|
|
|
light_diffuse.a = 1.0;
|
|
|
|
|
|
|
|
light_ambient.r = 0.316 + lightArg * 0.016;
|
|
|
|
light_ambient.g = light_ambient.r * 0.4/0.33;
|
|
|
|
light_ambient.b = light_ambient.r * 0.5/0.33;
|
|
|
|
light_ambient.a = 1.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
light_diffuse = light_diffuse * scattering;
|
|
|
|
yprime_alt = -sqrt(2.0 * EarthRadius * hazeLayerAltitude);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// default lighting based on texture and material using the light we have just computed
|
|
|
|
|
WS30 : terrain shaders from vs
Squashed commit of the following:
commit e7c89ffb600d1bf5cee2936b7dbff31089452745
Author: vs <vs2009@mail.com>
Date: Fri Nov 5 23:44:35 2021 +1000
WS30 shaders:
- WS30-ALS and WS30-ALS-ultra fargment and vertex shaders: Fix NDotL being used before it is initialised. Rename varying diffuse_term from WS2 terrain shaders to light_diffuse_comp as the full diffuse term is not calculated until the fragment shader.
- WS30-ALS-ultra.frag: Enable haze and lighting by default.
commit 9b55ad051a8d7f3568dfdcd6890655942999e8d0
Author: vs <vs2009@mail.com>
Date: Wed Nov 3 22:50:29 2021 +1000
WS30 terrain shaders: ws30-ALS-ultra.frag
- For power users looking to profile transitions on different GPUs: The test phase toggles and settings for different transition options are available at the start of ws30-ALS-ultra.frag, along with explanations, and how to get accurate profile results on different GPUs. Just need to change a few numbers, save, and debug menu > configure dev extensions > reload shaders to activate.
- Note: at a minimum, small scale transitions to remove the 'squareness' due to the landclass texture need to be used even on old GPUs.
- All transition options are off by default. ws30-ALS-ultra.frag is active when the terrain quality slider is set to Ultra. Start by turning one of small or large scale transitions.
- Texture mixing for small and large scale transitions don't work together, to reduce texture lookups. Turn one off when using the other.
- Landclasses with contrasting colours make transition issues more visble. The driver control panel texture filtering settings reduces issues with seams at landclass borders.
- ws30-ALS.frag is left untouched in this commit, for comparison and reviewing. ws30-ALS.frag is active when terrain quality slider is set High to Low.
Changes:
- Implement large scale transitions and small scale de-pixelisation of landclasses by searching the landclass texture. Several options and quality levels are available for profiling on different GPUs.
- There are fixes for multiple issues dealing with texture rendering.
Changelog:
1.0 - Small-scale transitions:
-- a) Remove squareness due to landclass texture by growing neighbour landclasses onto others depending on a growth priority. This feature uses 2 landclass texture lookups, 1 noise lookup, and only 1 ground texture lookup per point. For now the growth priority is simply the landclass id number. If this approach is used, growth priority would be a materials parameter. A way to set default growth priority by landclass via an xml file would be needed. There is flickering noise at long ranges due to small scale detail in the noise function used for growing landclasses. Partial derivative are used to turn off the feature, but turning off the feature too quickly still shows some square ness in distant landclasses.
-- b) Reduce squareness due to landclass texture by mixing base textures of neighbouring landclasses. This is not perfect, as perfectly square shapes turn into perfectly square shapes with perfectly smudged edges. This uses 2 landclass texture lookups, and 2-3 ground texture lookups.
-- c) - a) and b) can be run at once. This option will also fade the growths gradually with distance. This uses 2 landclass texture lookups, 1 noise lookup, and 2-3 ground texture lookups.
2.0 - Large scale transitions:
-- a) Implemented by searching the landclass texture. The search pattern is current landlcass for the fragment at the center, and n search points in four directions along the s and t axes forming a cross. The search directions are configurable in the code, adn a minimum of 3 directions are needed. The step size is configurable. The fewer the steps, the larger the bands formed in the transitions. There are 1+4*n landclass lookups per n search points. e.g. 1 search point: 5 lookups, 4 search points:17 lookups, 10 search points: 41 lookups.
-- b) An option to dither the transition bands by adding mixing noise is availble. This breaks up the visual impact of bands.
-- c) There is some functionality to grow neighbours on a large scale. No growth priority is used - bothe neighbours will lose definition. A more advanced implementation can use several material parameters to define the nature of the transition: some transitions are very sharp in nature like with agriculture, other transitions can be very gradual, some transitions are patchy. Materials can have competing parameters, to determine which neighbour grows or has a shorter transition on one side. These parameters will need a way of specifying defaults by landclass.
3.0 - Fixes
-- a) - Fix seams at landclass borders. These are caused by different ground textures being stretched by different amounts. At the border, an incorrect mip-map level is looked up, causing a colour disontinuity in addition to the difference between landclasses. The reason the mip-map LoD is incorrect is because GPUs use 4 neighbouring pixels to figure out how fast texture coordinates change with respect to screenspace x and y (i.e. partial derivaitves), and use that information to pick a mip-map level. At a landlcass border, this calculation is incorrect.
-- b) Fix seams at borders caused by the current detiling function. This is due to the detiling function changing the amount textures are stretched, as well as messing with coordinates.
-- c) The solution to a) and b) is to use textureGrad() to lookup textures. It allows specifying partial derivatives. The partial derivatives for the normal texture coordinates are obtained by built-in funcions, and these need to be multiplied by each stretching factor, including different stretching inside conditionals. All future texture lookups that use custom coordinate scaling/manipulation need to use textureGrad. This fixes various signs of incorrect mip-map lod with distance and view angle (textures look stable/solid).
-- d) Fix ground textures being stretched out of proportion in the detiling function. This is caused by tile dimensions not being unequal and texture stretching.
2021-11-05 19:59:32 +00:00
|
|
|
light_diffuse_comp = light_diffuse;
|
2021-10-21 20:31:03 +00:00
|
|
|
vec4 constant_term = (gl_LightModel.ambient + light_ambient);
|
|
|
|
// Another hack for supporting two-sided lighting without using
|
|
|
|
// gl_FrontFacing in the fragment shader.
|
|
|
|
gl_FrontColor.rgb = constant_term.rgb; gl_FrontColor.a = 1.0;
|
|
|
|
gl_BackColor.rgb = constant_term.rgb; gl_BackColor.a = 0.0;
|
|
|
|
|
2021-10-24 20:36:39 +00:00
|
|
|
setupShadows(ecPosition);
|
2021-10-21 20:31:03 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|