313 lines
9.6 KiB
GLSL
313 lines
9.6 KiB
GLSL
|
// -*-C++-*-
|
||
|
// © Vivian Meazza - 2011
|
||
|
// adapted to Atmospheric Light Scattering by Thorsten Renk 2013
|
||
|
|
||
|
// Shader that uses OpenGL state values to do per-pixel lighting
|
||
|
//
|
||
|
// The only light used is gl_LightSource[0], which is assumed to be
|
||
|
// directional.
|
||
|
//
|
||
|
// Diffuse colors come from the gl_Color, ambient from the material. This is
|
||
|
// equivalent to osg::Material::DIFFUSE.
|
||
|
|
||
|
#version 120
|
||
|
#define fps2kts 0.5925
|
||
|
|
||
|
#define MODE_OFF 0
|
||
|
#define MODE_DIFFUSE 1
|
||
|
#define MODE_AMBIENT_AND_DIFFUSE 2
|
||
|
|
||
|
// The ambient term of the lighting equation that doesn't depend on
|
||
|
// the surface normal is passed in gl_{Front,Back}Color. The alpha
|
||
|
// component is set to 1 for front, 0 for back in order to work around
|
||
|
// bugs with gl_FrontFacing in the fragment shader.
|
||
|
varying vec4 diffuse_term;
|
||
|
varying vec3 normal;
|
||
|
varying vec3 relPos;
|
||
|
|
||
|
varying float yprime_alt;
|
||
|
varying float mie_angle;
|
||
|
|
||
|
|
||
|
uniform int colorMode;
|
||
|
uniform float osg_SimulationTime;
|
||
|
uniform float Offset, AmpFactor, WindE, WindN, spd, hdg;
|
||
|
uniform sampler3D Noise;
|
||
|
uniform float hazeLayerAltitude;
|
||
|
uniform float terminator;
|
||
|
uniform float terrain_alt;
|
||
|
uniform float avisibility;
|
||
|
uniform float visibility;
|
||
|
uniform float overcast;
|
||
|
uniform float ground_scattering;
|
||
|
uniform float moonlight;
|
||
|
|
||
|
// This is the value used in the skydome scattering shader - use the same here for consistency?
|
||
|
const float EarthRadius = 5800000.0;
|
||
|
const float terminator_width = 200000.0;
|
||
|
|
||
|
float earthShade;
|
||
|
|
||
|
float light_func (in float x, in float a, in float b, in float c, in float d, in float e)
|
||
|
{
|
||
|
//x = x - 0.5;
|
||
|
|
||
|
// use the asymptotics to shorten computations
|
||
|
if (x < -15.0) {return 0.0;}
|
||
|
|
||
|
return e / pow((1.0 + a * exp(-b * (x-c)) ),(1.0/d));
|
||
|
}
|
||
|
|
||
|
float normalize_range(float _val)
|
||
|
{
|
||
|
if (_val > 180.0)
|
||
|
return _val - 360.0;
|
||
|
else
|
||
|
return _val;
|
||
|
}
|
||
|
|
||
|
void relWind(out float rel_wind_speed_kts, out float rel_wind_from_rad)
|
||
|
{
|
||
|
//calculate speed north and east in kts
|
||
|
float speed_north_kts = cos(radians(hdg)) * spd ;
|
||
|
float speed_east_kts = sin(radians(hdg)) * spd ;
|
||
|
|
||
|
//calculate the relative wind speed north and east in kts
|
||
|
float rel_wind_speed_from_east_kts = WindE*fps2kts + speed_east_kts;
|
||
|
float rel_wind_speed_from_north_kts = WindN*fps2kts + speed_north_kts;
|
||
|
|
||
|
//combine relative speeds north and east to get relative windspeed in kts
|
||
|
rel_wind_speed_kts = sqrt(pow(abs(rel_wind_speed_from_east_kts), 2.0)
|
||
|
+ pow(abs(rel_wind_speed_from_north_kts), 2.0));
|
||
|
|
||
|
//calculate the relative wind direction
|
||
|
float rel_wind_from_deg = degrees(atan(rel_wind_speed_from_east_kts, rel_wind_speed_from_north_kts));
|
||
|
//rel_wind_from_rad = atan(rel_wind_speed_from_east_kts, rel_wind_speed_from_north_kts);
|
||
|
float rel_wind = rel_wind_from_deg - hdg;
|
||
|
rel_wind = normalize_range(rel_wind);
|
||
|
rel_wind_from_rad = radians(rel_wind);
|
||
|
}
|
||
|
|
||
|
void rotationmatrix(in float angle, out mat4 rotmat)
|
||
|
{
|
||
|
rotmat = mat4( cos( angle ), -sin( angle ), 0.0, 0.0,
|
||
|
sin( angle ), cos( angle ), 0.0, 0.0,
|
||
|
0.0 , 0.0 , 1.0, 0.0,
|
||
|
0.0 , 0.0 , 0.0, 1.0 );
|
||
|
}
|
||
|
|
||
|
void main()
|
||
|
{
|
||
|
vec4 light_diffuse;
|
||
|
vec4 light_ambient;
|
||
|
vec3 shadedFogColor = vec3(0.55, 0.67, 0.88);
|
||
|
vec3 moonLightColor = vec3 (0.095, 0.095, 0.15) * moonlight;
|
||
|
|
||
|
|
||
|
float yprime;
|
||
|
float lightArg;
|
||
|
float intensity;
|
||
|
float vertex_alt;
|
||
|
float scattering;
|
||
|
|
||
|
|
||
|
|
||
|
mat4 RotationMatrix;
|
||
|
|
||
|
float relWindspd=0.0;
|
||
|
float relWinddir=0.0;
|
||
|
|
||
|
// compute relative wind speed and direction
|
||
|
relWind (relWindspd, relWinddir);
|
||
|
|
||
|
// map noise vector
|
||
|
vec4 noisevec = texture3D(Noise, gl_Vertex.xyz);
|
||
|
|
||
|
//waving effect
|
||
|
float tsec = osg_SimulationTime;
|
||
|
vec4 pos = gl_Vertex;
|
||
|
vec4 oldpos = gl_Vertex;
|
||
|
|
||
|
float freq = (10.0 * relWindspd) + 10.0;
|
||
|
pos.y = sin((pos.x * 5.0 + tsec * freq )/5.0) * 0.5 ;
|
||
|
pos.y += sin((pos.z * 5.0 + tsec * freq/2.0)/5.0) * 0.125 ;
|
||
|
|
||
|
pos.y *= pow(pos.x - Offset, 2.0) * AmpFactor;
|
||
|
|
||
|
//rotate the flag to align with relative wind
|
||
|
rotationmatrix(-relWinddir, RotationMatrix);
|
||
|
pos *= RotationMatrix;
|
||
|
gl_Position = gl_ModelViewProjectionMatrix * pos;
|
||
|
|
||
|
//do the colour and fog
|
||
|
vec4 ecPosition = gl_ModelViewMatrix * gl_Vertex;
|
||
|
|
||
|
|
||
|
gl_TexCoord[0] = gl_TextureMatrix[0] * gl_MultiTexCoord0;
|
||
|
normal = gl_NormalMatrix * gl_Normal;
|
||
|
vec4 ambient_color, diffuse_color;
|
||
|
|
||
|
if (colorMode == MODE_DIFFUSE) {
|
||
|
diffuse_color = gl_Color;
|
||
|
ambient_color = gl_FrontMaterial.ambient;
|
||
|
} else if (colorMode == MODE_AMBIENT_AND_DIFFUSE) {
|
||
|
diffuse_color = gl_Color;
|
||
|
ambient_color = gl_Color;
|
||
|
} else {
|
||
|
diffuse_color = gl_FrontMaterial.diffuse;
|
||
|
ambient_color = gl_FrontMaterial.ambient;
|
||
|
}
|
||
|
|
||
|
|
||
|
// first current altitude of eye position in model space
|
||
|
vec4 ep = gl_ModelViewMatrixInverse * vec4(0.0,0.0,0.0,1.0);
|
||
|
|
||
|
// and relative position to vector
|
||
|
relPos = gl_Vertex.xyz - ep.xyz;
|
||
|
|
||
|
// unfortunately, we need the distance in the vertex shader, although the more accurate version
|
||
|
// is later computed in the fragment shader again
|
||
|
float dist = length(relPos);
|
||
|
|
||
|
// altitude of the vertex in question, somehow zero leads to artefacts, so ensure it is at least 100m
|
||
|
vertex_alt = max(gl_Vertex.z,100.0);
|
||
|
scattering = ground_scattering + (1.0 - ground_scattering) * smoothstep(hazeLayerAltitude -100.0, hazeLayerAltitude + 100.0, vertex_alt);
|
||
|
|
||
|
|
||
|
// branch dependent on daytime
|
||
|
|
||
|
if (terminator < 1000000.0) // the full, sunrise and sunset computation
|
||
|
{
|
||
|
|
||
|
|
||
|
// establish coordinates relative to sun position
|
||
|
|
||
|
vec3 lightFull = (gl_ModelViewMatrixInverse * gl_LightSource[0].position).xyz;
|
||
|
vec3 lightHorizon = normalize(vec3(lightFull.x,lightFull.y, 0.0));
|
||
|
|
||
|
|
||
|
|
||
|
// yprime is the distance of the vertex into sun direction
|
||
|
yprime = -dot(relPos, lightHorizon);
|
||
|
|
||
|
// this gets an altitude correction, higher terrain gets to see the sun earlier
|
||
|
yprime_alt = yprime - sqrt(2.0 * EarthRadius * vertex_alt);
|
||
|
|
||
|
// two times terminator width governs how quickly light fades into shadow
|
||
|
// now the light-dimming factor
|
||
|
earthShade = 0.6 * (1.0 - smoothstep(-terminator_width+ terminator, terminator_width + terminator, yprime_alt)) + 0.4;
|
||
|
|
||
|
// parametrized version of the Flightgear ground lighting function
|
||
|
lightArg = (terminator-yprime_alt)/100000.0;
|
||
|
|
||
|
// directional scattering for low sun
|
||
|
if (lightArg < 10.0)
|
||
|
{mie_angle = (0.5 * dot(normalize(relPos), normalize(lightFull)) ) + 0.5;}
|
||
|
else
|
||
|
{mie_angle = 1.0;}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
light_diffuse.b = light_func(lightArg, 1.330e-05, 0.264, 3.827, 1.08e-05, 1.0);
|
||
|
light_diffuse.g = light_func(lightArg, 3.931e-06, 0.264, 3.827, 7.93e-06, 1.0);
|
||
|
light_diffuse.r = light_func(lightArg, 8.305e-06, 0.161, 3.827, 3.04e-05, 1.0);
|
||
|
light_diffuse.a = 1.0;
|
||
|
light_diffuse = light_diffuse * scattering;
|
||
|
|
||
|
|
||
|
light_ambient.r = light_func(lightArg, 0.236, 0.253, 1.073, 0.572, 0.33);
|
||
|
light_ambient.g = light_ambient.r * 0.4/0.33;
|
||
|
light_ambient.b = light_ambient.r * 0.5/0.33;
|
||
|
light_ambient.a = 1.0;
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
// correct ambient light intensity and hue before sunrise
|
||
|
if (earthShade < 0.5)
|
||
|
{
|
||
|
//light_ambient = light_ambient * (0.7 + 0.3 * smoothstep(0.2, 0.5, earthShade));
|
||
|
intensity = length(light_ambient.xyz);
|
||
|
|
||
|
light_ambient.rgb = intensity * normalize(mix(light_ambient.rgb, shadedFogColor, 1.0 -smoothstep(0.1, 0.8,earthShade) ));
|
||
|
light_ambient.rgb = light_ambient.rgb + moonLightColor * (1.0 - smoothstep(0.4, 0.5, earthShade));
|
||
|
|
||
|
intensity = length(light_diffuse.xyz);
|
||
|
light_diffuse.rgb = intensity * normalize(mix(light_diffuse.rgb, shadedFogColor, 1.0 -smoothstep(0.1, 0.7,earthShade) ));
|
||
|
}
|
||
|
|
||
|
|
||
|
// the haze gets the light at the altitude of the haze top if the vertex in view is below
|
||
|
// but the light at the vertex if the vertex is above
|
||
|
|
||
|
vertex_alt = max(vertex_alt,hazeLayerAltitude);
|
||
|
|
||
|
if (vertex_alt > hazeLayerAltitude)
|
||
|
{
|
||
|
if (dist > 0.8 * avisibility)
|
||
|
{
|
||
|
vertex_alt = mix(vertex_alt, hazeLayerAltitude, smoothstep(0.8*avisibility, avisibility, dist));
|
||
|
yprime_alt = yprime -sqrt(2.0 * EarthRadius * vertex_alt);
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
vertex_alt = hazeLayerAltitude;
|
||
|
yprime_alt = yprime -sqrt(2.0 * EarthRadius * vertex_alt);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
else // the faster, full-day version without lightfields
|
||
|
{
|
||
|
//vertex_alt = max(gl_Vertex.z,100.0);
|
||
|
|
||
|
earthShade = 1.0;
|
||
|
mie_angle = 1.0;
|
||
|
|
||
|
if (terminator > 3000000.0)
|
||
|
{light_diffuse = vec4 (1.0, 1.0, 1.0, 0.0);
|
||
|
light_ambient = vec4 (0.33, 0.4, 0.5, 0.0); }
|
||
|
else
|
||
|
{
|
||
|
|
||
|
lightArg = (terminator/100000.0 - 10.0)/20.0;
|
||
|
light_diffuse.b = 0.78 + lightArg * 0.21;
|
||
|
light_diffuse.g = 0.907 + lightArg * 0.091;
|
||
|
light_diffuse.r = 0.904 + lightArg * 0.092;
|
||
|
light_diffuse.a = 1.0;
|
||
|
|
||
|
light_ambient.r = 0.316 + lightArg * 0.016;
|
||
|
light_ambient.g = light_ambient.r * 0.4/0.33;
|
||
|
light_ambient.b = light_ambient.r * 0.5/0.33;
|
||
|
light_ambient.a = 1.0;
|
||
|
}
|
||
|
|
||
|
light_diffuse = light_diffuse * scattering;
|
||
|
yprime_alt = -sqrt(2.0 * EarthRadius * hazeLayerAltitude);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
diffuse_term = diffuse_color * light_diffuse;
|
||
|
vec4 ambient_term = ambient_color * light_ambient;
|
||
|
|
||
|
// Super hack: if diffuse material alpha is less than 1, assume a
|
||
|
// transparency animation is at work
|
||
|
if (gl_FrontMaterial.diffuse.a < 1.0)
|
||
|
diffuse_term.a = gl_FrontMaterial.diffuse.a;
|
||
|
else
|
||
|
diffuse_term.a = gl_Color.a;
|
||
|
|
||
|
// Another hack for supporting two-sided lighting without using
|
||
|
// gl_FrontFacing in the fragment shader.
|
||
|
gl_FrontColor.rgb = ambient_term.rgb; gl_FrontColor.a = 0.0;
|
||
|
gl_BackColor.rgb = ambient_term.rgb; gl_FrontColor.a = 1.0;
|
||
|
// fogCoord = abs(ecPosition.z / ecPosition.w);
|
||
|
|
||
|
//fog_Func(fogType);
|
||
|
|
||
|
}
|