1
0
Fork 0
fgdata/Shaders/water-inland.frag

126 lines
3.5 KiB
GLSL
Raw Normal View History

// This shader is mostly an adaptation of the shader found at
// http://www.bonzaisoftware.com/water_tut.html and its glsl conversion
// available at http://forum.bonzaisoftware.com/viewthread.php?tid=10
// <20> Michael Horsch - 2005
uniform sampler2D water_normalmap;
uniform sampler2D water_reflection;
uniform sampler2D water_dudvmap;
uniform sampler2D water_reflection_grey;
uniform float saturation;
uniform float CloudCover0, CloudCover1, CloudCover2, CloudCover3, CloudCover4;
varying vec4 waterTex1; //moving texcoords
varying vec4 waterTex2; //moving texcoords
varying vec4 waterTex4; //viewts
varying vec4 ecPosition;
varying vec3 viewerdir;
varying vec3 lightdir;
varying vec3 normal;
void main(void)
{
const vec4 sca = vec4(0.005, 0.005, 0.005, 0.005);
const vec4 sca2 = vec4(0.02, 0.02, 0.02, 0.02);
const vec4 tscale = vec4(0.25, 0.25, 0.25, 0.25);
// compute direction to viewer
vec3 E = normalize(viewerdir);
// compute direction to light source
vec3 L = normalize(lightdir);
// half vector
vec3 H = normalize(L + E);
const float water_shininess = 240.0;
// approximate cloud cover
float cover = 0;
cover = min(min(min(min(CloudCover0, CloudCover1),CloudCover2),CloudCover3),CloudCover4);
vec4 viewt = normalize(waterTex4);
vec4 disdis = texture2D(water_dudvmap, vec2(waterTex2 * tscale)) * 2.0 - 1.0;
vec4 dist = texture2D(water_dudvmap, vec2(waterTex1 + disdis*sca2)) * 2.0 - 1.0;
vec4 fdist = normalize(dist);
fdist *= sca;
//normalmap
vec4 nmap0 = texture2D(water_normalmap, vec2(waterTex1+ disdis*sca2)) * 2.0 - 1.0;
vec4 nmap2 = texture2D(water_normalmap, vec2(waterTex2 * tscale)) * 2.0 - 1.0;
vec4 vNorm = normalize(nmap0 + nmap2);
//load reflection
vec4 tmp = vec4(lightdir, 0.0);
vec4 refTex;
vec4 baseTex;
vec4 greyTex;
vec4 refl;
vec4 base;
vec4 grey;
baseTex = texture2D(water_reflection, vec2(tmp));
base = normalize(baseTex);
greyTex = texture2D(water_reflection_grey, vec2(tmp));
grey = normalize(greyTex);
//cover = 3;
if(cover >= 1.5){
refl = mix(base, grey, 0.35);
refl.r *= (0.93);
refl.g *= (0.95);
refl.b *= (1.0);
refl.a *= 1.0;
} else {
refl = mix(base, grey, 0.45);
refl.r *= (0.70 + 0.15 * cover);
refl.g *= (0.80 + 0.15 * cover);
refl.b *= (0.85 + 0.125 * cover);
refl.a *= 1.0;
}
vec3 N0 = vec3(texture2D(water_normalmap, vec2(waterTex1+ disdis*sca2)) * 2.0 - 1.0);
vec3 N1 = vec3(texture2D(water_normalmap, vec2(waterTex2 * tscale)) * 2.0 - 1.0);
vec3 N = normalize(normal+N0+N1);
// specular
vec3 specular_color = vec3(gl_LightSource[0].diffuse)
* pow(max(0.0, dot(N, H)), water_shininess) * 6.0;
vec4 specular = vec4(specular_color, 0.5);
specular = specular * saturation;
//calculate fresnel
vec4 invfres = vec4( dot(vNorm, viewt) );
vec4 fres = vec4(1.0) + invfres;
refl *= fres;
//calculate the fog factor
float fogFactor;
float fogCoord = ecPosition.z;
const float LOG2 = 1.442695;
fogFactor = exp2(-gl_Fog.density * gl_Fog.density * fogCoord * fogCoord * LOG2);
if(gl_Fog.density == 1.0)
fogFactor=1.0;
//calculate final colour
vec4 ambient_light = gl_LightSource[0].diffuse;
vec4 finalColor;
//cover = 3;
if(cover >= 1.5){
finalColor = refl + specular;
} else {
finalColor = refl;
}
finalColor *= ambient_light;
gl_FragColor = mix(gl_Fog.color, finalColor, fogFactor);
}