1
0
Fork 0
fgdata/Shaders/HDR/aerial_perspective_envmap.glsl

61 lines
1.9 KiB
Text
Raw Normal View History

#version 330 core
uniform sampler2D transmittance_tex;
uniform vec3 fg_CameraPositionCart;
uniform vec3 fg_SunDirectionWorld;
const int AERIAL_PERSPECTIVE_ENVMAP_STEPS = 4;
// atmos.glsl
float get_earth_radius();
float get_ray_end(vec3 ray_origin, vec3 ray_dir, float t_max);
vec4 compute_inscattering(in vec3 ray_origin,
in vec3 ray_dir,
in float t_max,
in vec3 sun_dir,
in int steps,
in sampler2D transmittance_lut,
out vec4 transmittance);
// atmos_spectral.glsl
vec4 get_sun_spectral_irradiance();
vec3 linear_srgb_from_spectral_samples(vec4 L);
vec4 get_aerial_perspective(vec3 pos)
{
vec3 ray_origin = fg_CameraPositionCart;
vec3 ray_end = pos;
// Make sure both ray ends are above the ground.
// We also apply a small bias to the ray end to prevent both points from
// being at the exact same place due to floating point precision.
float radius = get_earth_radius();
ray_origin += max(0.0, radius - length(ray_origin));
ray_end += max(0.0, radius - length(ray_end)) + 1.0;
vec3 ray_dir = ray_end - ray_origin;
float t_d = length(ray_dir);
ray_dir /= t_d;
float t_max = get_ray_end(ray_origin, ray_dir, t_d);
vec4 transmittance;
vec4 L = compute_inscattering(ray_origin,
ray_dir,
t_max,
fg_SunDirectionWorld,
AERIAL_PERSPECTIVE_ENVMAP_STEPS,
transmittance_tex,
transmittance);
vec4 ap;
ap.rgb = linear_srgb_from_spectral_samples(L * get_sun_spectral_irradiance());
ap.a = dot(transmittance, vec4(0.25));
return ap;
}
vec3 mix_aerial_perspective(vec3 color, vec4 ap)
{
return color * ap.a + ap.rgb;
}