1
0
Fork 0
fgdata/Shaders/HDR/3dcloud_common.frag

66 lines
1.8 KiB
GLSL
Raw Normal View History

#version 330 core
in vec2 texcoord;
in vec4 cloud_color;
in vec4 ap_color;
uniform sampler2D base_tex;
uniform mat4 osg_ProjectionMatrix;
uniform vec4 fg_Viewport;
uniform vec3 fg_SunDirection;
uniform float density = 30.0;
uniform float max_sample_dist = 0.05;
const int STEPS = 8;
// aerial_perspective.glsl
vec3 mix_aerial_perspective(vec3 color, vec4 ap);
vec4 cloud_common_frag()
{
vec4 base = texture(base_tex, texcoord);
// Directly discard fragments below a threshold
if (base.a < 0.02)
discard;
// Pixel position in screen space [-1, 1]
vec2 screen_uv = ((gl_FragCoord.xy - fg_Viewport.xy) / fg_Viewport.zw) * 2.0 - 1.0;
// XXX: Sun's screen-space position. This should be passed as an uniform
vec4 sun_dir_screen = osg_ProjectionMatrix * vec4(fg_SunDirection, 0.0);
sun_dir_screen.xyz /= sun_dir_screen.w;
sun_dir_screen.xyz = normalize(sun_dir_screen.xyz);
// Direction from pixel to Sun in screen space
vec2 sun_dir = screen_uv - sun_dir_screen.xy;
// Flip the x axis
sun_dir.x = -sun_dir.x;
float dt = max_sample_dist / STEPS;
// 2D ray march along the Sun's direction to estimate the transmittance
float T = 1.0;
for (int i = 0; i < STEPS; ++i) {
float t = (float(i) + 0.5) * dt;
vec2 uv_t = texcoord - sun_dir * t;
vec4 texel = texture(base_tex, uv_t);
// Beer-Lambert's law
T *= exp(-texel.a * dt * density);
}
// When the camera is facing perpendicularly to the Sun, the Sun's
// screen-space location can tend toward infinity. Fade the effect toward
// the perpendicular.
float fade = smoothstep(0.1, 0.5, dot(vec3(0.0, 0.0, -1.0), fg_SunDirection));
vec4 color = base * cloud_color;
color.rgb *= base.a * mix(0.5, T, fade);
color.rgb = mix_aerial_perspective(color.rgb, ap_color);
return color;
}