1
0
Fork 0
fgdata/Shaders/HDR/skydome.frag

103 lines
3.5 KiB
GLSL
Raw Normal View History

2021-04-10 11:14:16 +02:00
#version 330 core
layout(location = 0) out vec4 fragColor;
2021-04-10 11:14:16 +02:00
in vec3 ray_dir;
in vec3 ray_dir_view;
2021-04-10 11:14:16 +02:00
uniform bool is_envmap;
uniform sampler2D sky_view_tex;
uniform sampler2D transmittance_tex;
2021-04-10 11:14:16 +02:00
uniform vec3 fg_SunDirection;
uniform float fg_CameraDistanceToEarthCenter;
uniform float fg_EarthRadius;
uniform vec3 fg_CameraViewUp;
const float ATMOSPHERE_RADIUS = 6471e3;
const float SUN_HALF_ANGULAR_DIAMETER = 0.0047560222116845481; // radians(0.545 deg / 2)
const float SUN_COS_HALF_ANGULAR_DIAMETER = 0.9999886901476798392; // cos(radians(0.545 deg / 2))
const float SUN_SIN_HALF_ANGULAR_DIAMETER = 0.0047560042817014138; // sin(radians(0.545 deg / 2))
// math.glsl
float M_PI();
float sqr(float x);
float saturate(float x);
// atmos_spectral.glsl
vec4 get_sun_spectral_irradiance();
vec3 linear_srgb_from_spectral_samples(vec4 L);
// exposure.glsl
vec3 apply_exposure(vec3 color);
/*
* Limb darkening
* http://www.physics.hmc.edu/faculty/esin/a101/limbdarkening.pdf
*/
vec4 get_sun_darkening_factor(float cos_theta)
{
// Coefficients sampled for wavelengths 630, 560, 490, 430 nm
const vec4 u = vec4(1.0);
const vec4 alpha = vec4(0.429, 0.502, 0.575, 0.643);
float sin_theta = sqrt(1.0 - sqr(cos_theta));
float center_to_edge = saturate(sin_theta / SUN_SIN_HALF_ANGULAR_DIAMETER);
float mu = sqrt(1.0 - sqr(center_to_edge));
vec4 factor = vec4(1.0) - u * (vec4(1.0) - pow(vec4(mu), alpha));
return factor;
}
2021-04-10 11:14:16 +02:00
void main()
{
vec3 frag_ray_dir = normalize(ray_dir);
float azimuth = atan(frag_ray_dir.y, frag_ray_dir.x) / M_PI() * 0.5 + 0.5;
// Undo the non-linear transformation from the sky-view LUT
float l = asin(frag_ray_dir.z);
float elev = sqrt(abs(l) / (M_PI() * 0.5)) * sign(l) * 0.5 + 0.5;
2021-04-10 11:14:16 +02:00
vec4 sky_radiance = texture(sky_view_tex, vec2(azimuth, elev));
// When computing the sky texture we assumed an unitary light source.
// Now multiply by the sun irradiance.
sky_radiance *= get_sun_spectral_irradiance();
if (is_envmap == false) {
// Render the Sun disk
vec3 vs_ray_dir = normalize(ray_dir_view);
float cos_theta = dot(vs_ray_dir, fg_SunDirection);
if (cos_theta >= SUN_COS_HALF_ANGULAR_DIAMETER) {
float normalized_altitude =
(fg_CameraDistanceToEarthCenter - fg_EarthRadius)
/ (ATMOSPHERE_RADIUS - fg_EarthRadius);
float sun_zenith_cos_theta = dot(-vs_ray_dir, fg_CameraViewUp);
vec2 uv = vec2(sun_zenith_cos_theta * 0.5 + 0.5,
clamp(normalized_altitude, 0.0, 1.0));
vec4 transmittance = texture(transmittance_tex, uv);
vec4 darkening_factor = get_sun_darkening_factor(cos_theta);
// To get the actual sun radiance we should divide the irradiance
// by the solid angle subtended by the Sun, but the resulting
// radiance is too big to store in an rgb16f buffer. Also the bloom
// gets blown out too much.
// Instead, just multiply by a fixed value that looks good enough.
vec4 sun_radiance = get_sun_spectral_irradiance() * 500.0;
sun_radiance *= transmittance * darkening_factor;
sky_radiance += sun_radiance;
}
}
vec3 sky_color = linear_srgb_from_spectral_samples(sky_radiance);
if (is_envmap == false) {
// Only pre-expose when not rendering to the environment map.
// We want the non-exposed radiance values for IBL.
sky_color = apply_exposure(sky_color);
}
fragColor = vec4(sky_color, 1.0);
2021-04-10 11:14:16 +02:00
}