1
0
Fork 0
fgdata/Shaders/HDR/atmos-multiple-scattering.frag

134 lines
4.8 KiB
GLSL
Raw Normal View History

// An implementation of Sébastien Hillaire's "A Scalable and Production Ready
// Sky and Atmosphere Rendering Technique".
//
// This shader generates the multiple scattering LUT.
#version 330 core
out vec3 fragColor;
in vec2 texCoord;
uniform sampler2D transmittance_lut;
uniform float fg_EarthRadius;
const float PI = 3.141592653;
const float ATMOSPHERE_RADIUS = 6471e3;
const int SQRT_SAMPLES = 4;
const float INV_SAMPLES = 1.0 / float(SQRT_SAMPLES*SQRT_SAMPLES);
const int MULTIPLE_SCATTERING_SAMPLES = 20;
const vec3 ground_albedo = vec3(0.3);
float raySphereIntersection(vec3 ro, vec3 rd, float radius);
vec3 sampleMedium(in float height,
out float mieScattering, out float mieAbsorption,
out vec3 rayleighScattering, out vec3 ozoneAbsorption);
float miePhaseFunction(float cosTheta);
float rayleighPhaseFunction(float cosTheta);
vec3 getValueFromLUT(sampler2D lut, float sunCosTheta, float normalizedHeight);
vec3 generateRayDir(float theta, float phi)
{
float cosPhi = cos(phi);
float sinPhi = sin(phi);
float cosTheta = cos(theta);
float sinTheta = sin(theta);
return vec3(cosTheta * sinPhi, sinTheta * sinPhi, cosPhi);
}
void main()
{
float sunCosTheta = texCoord.x * 2.0 - 1.0;
vec3 sunDir = vec3(-sqrt(1.0 - sunCosTheta*sunCosTheta), 0.0, sunCosTheta);
float altitude = mix(fg_EarthRadius, ATMOSPHERE_RADIUS, texCoord.y);
vec3 rayOrigin = vec3(0.0, 0.0, altitude);
vec3 Ltotal = vec3(0.0);
vec3 LMStotal = vec3(0.0);
for (int i = 0; i < SQRT_SAMPLES; ++i) {
for (int j = 0; j < SQRT_SAMPLES; ++j) {
float theta = 2.0 * PI * (float(i) + 0.5) / float(SQRT_SAMPLES);
float phi = PI * (float(j) + 0.5) / float(SQRT_SAMPLES);
vec3 rayDir = generateRayDir(theta, phi);
float atmosDist = raySphereIntersection(rayOrigin, rayDir, ATMOSPHERE_RADIUS);
float groundDist = raySphereIntersection(rayOrigin, rayDir, fg_EarthRadius);
float tmax;
if (groundDist < 0.0) {
// No ground collision, use the distance to the outer atmosphere
tmax = atmosDist;
} else {
// Use the distance to the ground
tmax = groundDist;
}
float cosTheta = dot(rayDir, sunDir);
float miePhase = miePhaseFunction(cosTheta);
float rayleighPhase = rayleighPhaseFunction(-cosTheta);
vec3 L = vec3(0.0);
vec3 LMS = vec3(0.0);
vec3 throughput = vec3(1.0);
float t = 0.0;
for (int k = 0; k < MULTIPLE_SCATTERING_SAMPLES; ++k) {
float newT = ((float(k) + 0.3) / MULTIPLE_SCATTERING_SAMPLES) * tmax;
float dt = newT - t;
t = newT;
vec3 samplePos = rayOrigin + rayDir * t;
float height = length(samplePos) - fg_EarthRadius;
float normalizedHeight = height / (ATMOSPHERE_RADIUS - fg_EarthRadius);
float mieScattering, mieAbsorption;
vec3 rayleighScattering, ozoneAbsorption;
vec3 extinction = sampleMedium(height, mieScattering, mieAbsorption,
rayleighScattering, ozoneAbsorption);
vec3 sampleTransmittance = exp(-dt*extinction);
vec3 sunTransmittance = getValueFromLUT(
transmittance_lut, sunCosTheta, normalizedHeight);
vec3 S = (rayleighScattering * rayleighPhase +
mieScattering * miePhase) * sunTransmittance;
// Not using the power serie
vec3 MS = mieScattering + rayleighScattering;
vec3 MSint = (MS - MS * sampleTransmittance) / extinction;
LMS += throughput * MSint;
vec3 Sint = (S - S * sampleTransmittance) / extinction;
L += throughput * Sint;
throughput *= sampleTransmittance;
}
if (groundDist >= 0.0) {
// Account for bounced light off the Earth
vec3 p = rayOrigin + rayDir * groundDist;
float pHeight = length(p);
vec3 up = p / pHeight;
float normHeight = (pHeight - fg_EarthRadius)
/ (ATMOSPHERE_RADIUS - fg_EarthRadius);
float sunZenithCosTheta = dot(sunDir, up);
vec3 transmittanceFromGround = getValueFromLUT(
transmittance_lut, sunZenithCosTheta, normHeight);
L += transmittanceFromGround * throughput
* clamp(sunZenithCosTheta, 0.0, 1.0) * ground_albedo / PI;
}
Ltotal += L * INV_SAMPLES;
LMStotal += LMS * INV_SAMPLES;
}
}
fragColor = Ltotal / (1.0 - LMStotal);
}