226 lines
10 KiB
GLSL
226 lines
10 KiB
GLSL
// -*-C++-*-
|
|
#version 120
|
|
|
|
// Shader that takes a list of GL_POINTS and draws a light (point-sprite like
|
|
// texture, more accurately a light halo) at the given point. This shader
|
|
// provides support for light animations like blinking, time period handling
|
|
// for lights on only during night time or in low visiblity and directional
|
|
// lighting.
|
|
//
|
|
// The actual rendering code is inspired from an existing implementation
|
|
// found at:
|
|
// FGData commit 9355d464c175bd5d51ba32527180ed4e94e86fbb
|
|
// Shaders/surface-lights-ALS.vert
|
|
// with major changes.
|
|
//
|
|
// Licence: GPL v2+
|
|
// Written by Fahim Dalvi, January 2021
|
|
|
|
attribute vec3 lightParams;
|
|
attribute vec4 animationParams;
|
|
attribute vec3 directionParams1;
|
|
attribute vec2 directionParams2;
|
|
uniform float osg_SimulationTime;
|
|
|
|
uniform float avisibility;
|
|
uniform float sun_angle;
|
|
uniform float fov;
|
|
|
|
varying vec3 relativePosition;
|
|
varying vec2 rawPosition;
|
|
|
|
varying float apparentSize;
|
|
varying float haloSize;
|
|
varying float lightSize;
|
|
varying float lightIntensity;
|
|
|
|
const float epsilon = 1e-7;
|
|
|
|
// rand2D sourced from noise.frag, since *.vert files
|
|
// cannot access functions defined in *.frag files
|
|
// Git commit: b8ddf517f4495219da7675d81bed59a378e2d78a
|
|
// File: fgdata/Shaders/noise.frag
|
|
float rand2D(in vec2 co){
|
|
return fract(sin(dot(co.xy ,vec2(12.9898,78.233))) * 43758.5453);
|
|
}
|
|
|
|
void main()
|
|
{
|
|
/***************************** Initialization ****************************/
|
|
float random = rand2D(vec2(gl_Vertex.x, gl_Vertex.yz)) * 10;
|
|
float random_1 = floor(random); // random_1 can take 10 values
|
|
float random_2 = fract(random); // random_2 takes the remaining random bits
|
|
|
|
/*************** Night and low visibility lights handling ****************/
|
|
int on_period = int(lightParams.z + 0.5); // round() not supported by glsl 1.2
|
|
const float sun_angle_min = 1.57;
|
|
const float sun_angle_max = 1.61;
|
|
float target_sun_angle = sun_angle_min + random_1/10 * (sun_angle_max - sun_angle_min);
|
|
if (on_period == 1 && sun_angle < sun_angle_min) {
|
|
// Lights will switch on exactly at ~89 degree sun angle
|
|
gl_Position = vec4(0.0,0.0,10.0,1.0);
|
|
gl_FrontColor.a = 0.0;
|
|
return;
|
|
} else if (on_period == 2 && sun_angle < target_sun_angle) {
|
|
// Lights will switch on randomly between 90 and 92 degree sun angle
|
|
// corresponding to a ~10 minute period around sunset
|
|
gl_Position = vec4(0.0,0.0,10.0,1.0);
|
|
gl_FrontColor.a = 0.0;
|
|
return;
|
|
} else if (on_period == 3 && (sun_angle < sun_angle_min && avisibility > 5000)) {
|
|
// Lights will switch on exactly at ~89 degree sun angle or when visibility
|
|
// is less than 5000m
|
|
gl_Position = vec4(0.0,0.0,10.0,1.0);
|
|
gl_FrontColor.a = 0.0;
|
|
return;
|
|
}
|
|
|
|
/****************************** Animations *******************************/
|
|
float interval = animationParams.x;
|
|
if (interval > 0) {
|
|
float on_portion = animationParams.y;
|
|
float strobe_rate = animationParams.z;
|
|
float offset = animationParams.w;
|
|
|
|
// Randomize offset if its less than 0
|
|
if (offset < 0) {
|
|
// rand2D returns a value from 0 to 1, multiplying it with
|
|
// the interval chooses an offset within the entire animation
|
|
// window
|
|
offset = random_2 * interval;
|
|
}
|
|
|
|
float strobe_interval = interval/strobe_rate;
|
|
float interval_fraction = mod(osg_SimulationTime + offset, interval)/interval;
|
|
float strobe_fraction = mod(osg_SimulationTime + offset, strobe_interval)/strobe_interval;
|
|
|
|
if (interval_fraction > on_portion || (strobe_fraction < 0.5 && strobe_rate > 0.0000001)) {
|
|
gl_Position = vec4(0.0,0.0,10.0,1.0);
|
|
gl_FrontColor.a = 0.0;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/***************************** Light visuals *****************************/
|
|
gl_FrontColor = gl_Color;
|
|
gl_Position = ftransform();
|
|
|
|
vec4 eyePosition = gl_ModelViewMatrixInverse * vec4(0.0,0.0,0.0,1.0);
|
|
relativePosition = gl_Vertex.xyz - eyePosition.xyz;
|
|
rawPosition = gl_Vertex.xy;
|
|
float dist = length(relativePosition);
|
|
float angularAttenuationFactor = 1.0;
|
|
|
|
/************************** Direction handling ***************************/
|
|
if (directionParams2.x < 359.999999 || directionParams2.y < 359.999999) {
|
|
vec3 eyeVector = normalize(-relativePosition);
|
|
vec3 lightNormal = normalize(directionParams1);
|
|
vec3 upVec = normalize(vec3(0,0,1));
|
|
|
|
vec3 horizontalVector, verticalVector;
|
|
|
|
if (abs(dot(lightNormal, upVec)) > (1 - epsilon)) {
|
|
// Light direction is directly up or down
|
|
horizontalVector = normalize(vec3(1, 0, 0));
|
|
verticalVector = normalize(vec3(0, 1, 0));
|
|
} else {
|
|
horizontalVector = normalize(cross(lightNormal, upVec));
|
|
verticalVector = normalize(cross(lightNormal, horizontalVector));
|
|
}
|
|
|
|
vec3 projectionOnHorizontal = lightNormal;
|
|
vec3 projectionOnVertical = lightNormal;
|
|
|
|
if (dot(lightNormal, eyeVector) < (-1 + epsilon)) {
|
|
// If the view direction is directly opposite to the light normal
|
|
projectionOnHorizontal = eyeVector;
|
|
projectionOnVertical = eyeVector;
|
|
} else {
|
|
// If the view vector is not perpendicular to the horizontal axis
|
|
if (abs(dot(horizontalVector, eyeVector)) > (0 + epsilon)) {
|
|
projectionOnHorizontal = normalize(eyeVector - dot(verticalVector, eyeVector) * verticalVector);
|
|
}
|
|
|
|
// If the view vector is not perpendicular to the vertical axis
|
|
if (abs(dot(verticalVector, eyeVector)) > (0 + epsilon)) {
|
|
projectionOnVertical = normalize(eyeVector - dot(horizontalVector, eyeVector) * horizontalVector);
|
|
}
|
|
}
|
|
|
|
float horizontalAngle = dot(projectionOnHorizontal, lightNormal);
|
|
float verticalAngle = dot(projectionOnVertical, lightNormal);
|
|
|
|
float minHoriz = cos(radians(directionParams2.x * 0.5));
|
|
float minVert = cos(radians(directionParams2.y * 0.5));
|
|
|
|
// Light is 0 intensity below [specified angle]
|
|
// Increases softmax-ly between [specified angle] and [1/2 of difference of specified angle and 0] (head on viewing)
|
|
// Light is 1 intensity after [1/2 of difference of specified angle and 0] to [0 degrees]
|
|
// Note: difference of angles is computed linearly after applying the cosine function, but it works well enough as an approximation
|
|
horizontalAngle = smoothstep(minHoriz, minHoriz + (1 - minHoriz)/2.0, horizontalAngle);
|
|
verticalAngle = smoothstep(minVert, minVert + (1 - minVert)/2.0, verticalAngle);
|
|
angularAttenuationFactor = horizontalAngle*verticalAngle;
|
|
|
|
// Debug animation code
|
|
// float ra = mod(osg_SimulationTime*30, 20);
|
|
// gl_FrontColor = vec4(verticalAngle, 0, 0, 1);
|
|
// if (ra < 10) {
|
|
// gl_Position = gl_ModelViewProjectionMatrix * (gl_Vertex + (ra)/2 * normalize(vec4(directionParams1, 0)));
|
|
// gl_FrontColor = vec4(1.0, 0.0, 0.0, 1.0);
|
|
// } else if (ra < 20) {
|
|
// // gl_Position = gl_ModelViewProjectionMatrix * (gl_Vertex + (ra-15) * normalize(vec4(proj_on_horizontal, 0)));
|
|
// // gl_FrontColor = vec4(0.0, 0.0, 1.0, 1.0);
|
|
// } else if (ra < 30) {
|
|
// // gl_Position = gl_ModelViewProjectionMatrix * (gl_Vertex + (ra-25) * normalize(vec4(vertical_vec, 0)));
|
|
// gl_FrontColor = vec4(0.0, 1.0, 0.0, 1.0);
|
|
// } else if (ra < 40) {
|
|
// gl_Position = gl_ModelViewProjectionMatrix * (gl_Vertex + (ra-35) * normalize(vec4(horizontal_vec, 0)));
|
|
// gl_FrontColor = vec4(0.0, 1.0, 1.0, 1.0);
|
|
// } else {
|
|
// gl_Position = gl_ModelViewProjectionMatrix * (gl_Vertex + (ra-45) * normalize(vec4(proj_on_vertical, 0)));
|
|
// gl_FrontColor = vec4(0.0, 0.0, 1.0, 1.0);
|
|
// }
|
|
}
|
|
|
|
lightSize = lightParams.x;
|
|
lightIntensity = lightParams.y;
|
|
|
|
/********
|
|
* Each light is made up of a base circle, a circular-ish halo around the base and a bunch of
|
|
* star-like rays
|
|
* baseLightSize is tuned using reference objects of sizes 10cm, 50cm, 100cm, 500cm and 1000cm
|
|
* under the assumption that the "bright center" part of the light will be the approximately the
|
|
* same size as the light itself
|
|
*/
|
|
float baseLightSize = lightSize / (dist/80) * 60/fov;
|
|
|
|
|
|
/********
|
|
* Decide how big the halo + star like structure can get relative to the actual light size
|
|
* This has been done by fitting various curve (using random parameter search to fit the
|
|
* following data):
|
|
|
|
dist/intensity -> haloSize
|
|
0/2070 -> 2
|
|
0/15000 -> 2
|
|
1900/2070 -> 10
|
|
33250/15000 -> 30
|
|
|
|
* The real world distance to dist mapping is around the following:
|
|
1nm = 1930
|
|
2nm = 3780
|
|
3nm = 5630
|
|
4nm = 7480
|
|
5nm = 9330
|
|
*/
|
|
|
|
// Various fits that are better at different "zones" of intensity/distance combinations
|
|
// haloSize = 1 + log(1 + 8.207628166987313e-05 + pow(0.00935009645108105 * dist, 0.7229519420159332)) * log(1 + 0.008611494896181404 + pow(9.987873482714503e-08 * lightIntensity, 0.5460367551326879)) * 188.78730222257022;
|
|
// haloSize = 1 + log(1 + pow(0.00344640493737296 * dist, 43.666719413543746)) * log(1 + pow(6.174965900415324e-07 * lightIntensity, 0.1915282228627938)) * log(1 + pow(48.81816078788492 * dist * lightIntensity, 0.39087987152530046)) * 0.03982200390091456;
|
|
// haloSize = 1 + 1 + log(1 + pow(0.003022850828231838 * dist, 81.88510919372303)) * log(1 + pow(2.8538041872684384e-05 * lightIntensity, 0.2798979878622515)) * log(1 + pow(6.125105317094489 * dist * lightIntensity, 9.486990540357818e-06)) * 0.17726981739920522;
|
|
// haloSize = 1 + (log(1 + 0.0009319617220954881 * dist) * log(1 + 0.3853503865089568 * lightIntensity)) * 0.8677850896527736;
|
|
haloSize = 1 + (log(1 + 0.0030356535475020265 * dist) * log(1 + 0.00964994652970935 * lightIntensity)) * 1.1927528593388748;
|
|
apparentSize = baseLightSize * haloSize * angularAttenuationFactor;
|
|
|
|
gl_PointSize = apparentSize;
|
|
}
|