122 lines
3.6 KiB
GLSL
122 lines
3.6 KiB
GLSL
|
// WS30 FRAGMENT SHADER
|
||
|
|
||
|
// -*-C++-*-
|
||
|
#version 130
|
||
|
#extension GL_EXT_texture_array : enable
|
||
|
|
||
|
varying vec3 normal;
|
||
|
varying vec4 ecPosition;
|
||
|
|
||
|
uniform sampler2D landclass;
|
||
|
uniform sampler2DArray atlas;
|
||
|
uniform sampler2D perlin;
|
||
|
|
||
|
// Passed from VPBTechnique, not the Effect
|
||
|
uniform float fg_tileWidth;
|
||
|
uniform float fg_tileHeight;
|
||
|
uniform bool fg_photoScenery;
|
||
|
uniform vec4 fg_dimensionsArray[128];
|
||
|
uniform vec4 fg_ambientArray[128];
|
||
|
uniform vec4 fg_diffuseArray[128];
|
||
|
uniform vec4 fg_specularArray[128];
|
||
|
uniform vec4 fg_textureLookup1[128];
|
||
|
uniform vec4 fg_textureLookup2[128];
|
||
|
uniform mat4 fg_zUpTransform;
|
||
|
uniform vec3 fg_modelOffset;
|
||
|
|
||
|
// See include_fog.frag
|
||
|
uniform int fogType;
|
||
|
vec3 fog_Func(vec3 color, int type);
|
||
|
|
||
|
// See Shaders/shadows-include.frag
|
||
|
float getShadowing();
|
||
|
|
||
|
// See Shaders/clustered-include.frag
|
||
|
vec3 getClusteredLightsContribution(vec3 p, vec3 n, vec3 texel);
|
||
|
|
||
|
void main()
|
||
|
{
|
||
|
float NdotL, NdotHV, fogFactor;
|
||
|
vec3 lightDir = gl_LightSource[0].position.xyz;
|
||
|
vec3 halfVector = gl_LightSource[0].halfVector.xyz;
|
||
|
vec4 texel;
|
||
|
vec4 fragColor;
|
||
|
vec4 specular = vec4(0.0);
|
||
|
|
||
|
// Material properties.
|
||
|
// Material properties.
|
||
|
vec4 mat_diffuse, mat_ambient, mat_specular;
|
||
|
float mat_shininess;
|
||
|
|
||
|
if (fg_photoScenery) {
|
||
|
mat_ambient = vec4(1.0,1.0,1.0,1.0);
|
||
|
mat_diffuse = vec4(1.0,1.0,1.0,1.0);
|
||
|
mat_specular = vec4(0.1, 0.1, 0.1, 1.0);
|
||
|
mat_shininess = 1.2;
|
||
|
|
||
|
texel = texture(landclass, vec2(gl_TexCoord[0].s, 1.0 - gl_TexCoord[0].t));
|
||
|
} else {
|
||
|
// The Landclass for this particular fragment. This can be used to
|
||
|
// index into the atlas textures.
|
||
|
int lc = int(texture2D(landclass, gl_TexCoord[0].st).g * 255.0 + 0.5);
|
||
|
uint tex1 = uint(fg_textureLookup1[lc].r * 255.0 + 0.5);
|
||
|
|
||
|
// Color Mode is always AMBIENT_AND_DIFFUSE, which means
|
||
|
// using a base colour of white for ambient/diffuse,
|
||
|
// rather than the material color from ambientArray/diffuseArray.
|
||
|
mat_ambient = vec4(1.0,1.0,1.0,1.0);
|
||
|
mat_diffuse = vec4(1.0,1.0,1.0,1.0);
|
||
|
mat_specular = fg_specularArray[lc];
|
||
|
mat_shininess = fg_dimensionsArray[lc].z;
|
||
|
|
||
|
// Different textures have different have different dimensions.
|
||
|
vec2 atlas_dimensions = fg_dimensionsArray[lc].st;
|
||
|
vec2 atlas_scale = vec2(fg_tileWidth / atlas_dimensions.s, fg_tileHeight / atlas_dimensions.t );
|
||
|
vec2 st = atlas_scale * gl_TexCoord[0].st;
|
||
|
|
||
|
// Rotate texture using the perlin texture as a mask to reduce tiling
|
||
|
if (step(0.5, texture(perlin, atlas_scale * gl_TexCoord[0].st / 8.0).r) == 1.0) {
|
||
|
st = vec2(atlas_scale.s * gl_TexCoord[0].t, atlas_scale.t * gl_TexCoord[0].s);
|
||
|
}
|
||
|
|
||
|
if (step(0.5, texture(perlin, - atlas_scale * gl_TexCoord[0].st / 16.0).r) == 1.0) {
|
||
|
st = -st;
|
||
|
}
|
||
|
|
||
|
texel = texture(atlas, vec3(st, tex1));
|
||
|
|
||
|
}
|
||
|
|
||
|
vec4 color = mat_ambient * (gl_LightModel.ambient + gl_LightSource[0].ambient);
|
||
|
|
||
|
// If gl_Color.a == 0, this is a back-facing polygon and the
|
||
|
// normal should be reversed.
|
||
|
vec3 n = (2.0 * gl_Color.a - 1.0) * normal;
|
||
|
n = normalize(n);
|
||
|
NdotL = dot(n, lightDir);
|
||
|
|
||
|
if (NdotL > 0.0) {
|
||
|
float shadowmap = getShadowing();
|
||
|
color += mat_diffuse * NdotL * shadowmap;
|
||
|
NdotHV = max(dot(n, halfVector), 0.0);
|
||
|
if (mat_shininess > 0.0)
|
||
|
specular.rgb = (mat_specular.rgb
|
||
|
* gl_LightSource[0].specular.rgb
|
||
|
* pow(NdotHV, mat_shininess)
|
||
|
* shadowmap);
|
||
|
}
|
||
|
color.a = mat_diffuse.a;
|
||
|
|
||
|
// This shouldn't be necessary, but our lighting becomes very
|
||
|
// saturated. Clamping the color before modulating by the texture
|
||
|
// is closer to what the OpenGL fixed function pipeline does.
|
||
|
color = clamp(color, 0.0, 1.0);
|
||
|
|
||
|
|
||
|
fragColor = color * texel + specular;
|
||
|
fragColor.rgb += getClusteredLightsContribution(ecPosition.xyz, n, texel.rgb);
|
||
|
|
||
|
fragColor.rgb = fog_Func(fragColor.rgb, fogType);
|
||
|
gl_FragColor = fragColor;
|
||
|
}
|