easy-osm2city-podman/full/fgdata/Shaders/model-ALS-wingflex.vert

264 lines
7.6 KiB
GLSL
Raw Normal View History

// -*- mode: C; -*-
// Licence: GPL v2
// © Emilian Huminiuc and Vivian Meazza 2011
#version 120
// the file is directly copied from model-combined.eff except the (three) WINGFLEX to END WINGLFEX parts
// and the subsequent gl_Vertex integrations
// I didnt find how to do a more beautiful way (including model-combined and only adding the wingflexer part)
// if you know how to do this, please do :)
varying vec3 rawpos;
varying vec3 VNormal;
varying vec3 VTangent;
varying vec3 VBinormal;
varying vec3 vViewVec;
varying vec3 reflVec;
varying vec3 vertVec;
varying float alpha;
attribute vec3 tangent;
attribute vec3 binormal;
uniform float pitch;
uniform float roll;
uniform float hdg;
uniform int refl_dynamic;
uniform int nmap_enabled;
uniform int shader_qual;
// WINGFLEX
uniform int wingflex_type;
uniform float body_width;
uniform float wingflex_alpha;
uniform float wingflex_trailing_alpha;
uniform float wingsweep_factor;
uniform float wingflex_z;
uniform float wing_span;
uniform float rotation_x1;
uniform float rotation_y1;
uniform float rotation_z1;
uniform float rotation_x2;
uniform float rotation_y2;
uniform float rotation_z2;
uniform float rotation_rad;
// END WINGFLEX
//////Fog Include///////////
// uniform int fogType;
// void fog_Func(int type);
////////////////////////////
// WINGFLEX
vec2 calc_deflection(float y){
float distance;
float bwh = body_width/2;
if(y < bwh && y > -bwh){
//this part does not move
distance = 0;
}else if(y > bwh){
distance = y - bwh;
}else if(y < -bwh){
distance = y + bwh;
}
float max_dist = (wing_span-body_width)/2;
float deflection = wingflex_z * (distance*distance)/(max_dist*max_dist);
float delta_y;
if(y<0){
delta_y = deflection/wing_span;
}else{
delta_y = -deflection/wing_span;
}
vec2 returned = vec2 ( deflection, delta_y );
return returned;
}
// END WINGFLEX
void setupShadows(vec4 eyeSpacePos);
void rotationMatrixPR(in float sinRx, in float cosRx, in float sinRy, in float cosRy, out mat4 rotmat)
{
rotmat = mat4( cosRy , sinRx * sinRy , cosRx * sinRy, 0.0,
0.0 , cosRx , -sinRx * cosRx, 0.0,
-sinRy, sinRx * cosRy, cosRx * cosRy , 0.0,
0.0 , 0.0 , 0.0 , 1.0 );
}
void rotationMatrixH(in float sinRz, in float cosRz, out mat4 rotmat)
{
rotmat = mat4( cosRz, -sinRz, 0.0, 0.0,
sinRz, cosRz, 0.0, 0.0,
0.0 , 0.0 , 1.0, 0.0,
0.0 , 0.0 , 0.0, 1.0 );
}
void main(void)
{
// WINGFLEX
vec4 vertex = gl_Vertex;
if ( wingflex_type == 0 ) {
vec2 deflection = calc_deflection(vertex.y);
vertex.z += deflection[0];
vertex.y += deflection[1];
if(rotation_rad != 0){
vec2 defl1=calc_deflection(rotation_y1);
vec2 defl2=calc_deflection(rotation_y2);
float rot_y1 = rotation_y1;
float rot_z1 = rotation_z1;
float rot_y2 = rotation_y2;
float rot_z2 = rotation_z2;
rot_y1 -= defl1[1];
rot_z1 += defl1[0];
rot_y2 -= defl2[1];
rot_z2 += defl2[0];
//Calculate rotation
vec3 normal;
normal[0]=rotation_x2-rotation_x1;
normal[1]=rot_y2-rot_y1;
normal[2]=rot_z2-rot_z1;
normal = normalize(normal);
float tmp = (1-cos(rotation_rad));
mat4 rotation_matrix = mat4(
pow(normal[0],2)*tmp+cos(rotation_rad), normal[1]*normal[0]*tmp-normal[2]*sin(rotation_rad), normal[2]*normal[0]*tmp+normal[1]*sin(rotation_rad), 0.0,
normal[0]*normal[1]*tmp+normal[2]*sin(rotation_rad), pow(normal[1],2)*tmp+cos(rotation_rad), normal[2]*normal[1]*tmp-normal[0]*sin(rotation_rad), 0.0,
normal[0]*normal[2]*tmp-normal[1]*sin(rotation_rad), normal[1]*normal[2]*tmp+normal[0]*sin(rotation_rad), pow(normal[2],2)*tmp+cos(rotation_rad), 0.0,
0.0, 0.0, 0.0, 1.0
);
vec4 old_point;
old_point[0]=vertex.x;
old_point[1]=vertex.y;
old_point[2]=vertex.z;
old_point[3]=1.0;
rotation_matrix[3][0] = rotation_x1 - rotation_x1*rotation_matrix[0][0] - rot_y1*rotation_matrix[1][0] - rot_z1*rotation_matrix[2][0];
rotation_matrix[3][1] = rot_y1 - rotation_x1*rotation_matrix[0][1] - rot_y1*rotation_matrix[1][1] - rot_z1*rotation_matrix[2][1];
rotation_matrix[3][2] = rot_z1 - rotation_x1*rotation_matrix[0][2] - rot_y1*rotation_matrix[1][2] - rot_z1*rotation_matrix[2][2];
vec4 new_point=rotation_matrix*old_point;
vertex.x=new_point[0];
vertex.y=new_point[1];
vertex.z=new_point[2];
}
} else if (wingflex_type == 1 ) {
float arm_reach = 4.8;
float x_factor = max((abs(vertex.x) - body_width),0);
float y_factor = max(vertex.y,0.0);
float flex_factor1 = wingflex_alpha * (1.0 - wingsweep_factor);
float flex_factor2 = wingflex_trailing_alpha * (1.0 -wingsweep_factor);
if (flex_factor1<0.0) {flex_factor1 *=0.7;}
if (flex_factor2<0.0) {flex_factor1 *=0.7;}
// basic flapping motion is linear to arm_reach, then parabolic
float intercept_point = 0.1 * arm_reach * arm_reach * flex_factor1;
if (x_factor < arm_reach)
{
vertex.z += x_factor/arm_reach * intercept_point;
}
else
{
vertex.z += 0.1 * x_factor * x_factor * flex_factor1;
}
// upward stroke is slightly forward-swept, downward stroke a bit backward
vertex.y += -0.25 * abs(x_factor) * flex_factor1;
//trailing edge lags the motion
vertex.z += 0.2 * y_factor * x_factor * flex_factor2;
// if the wings are folded, we sweep them back
vertex.y += 0.5 * x_factor * wingsweep_factor;
float sweep_x = 0.5;
if (vertex.x > 0.0) {sweep_x = - 0.5;}
vertex.x+= sweep_x * (1.0 + 0.5 *x_factor) * wingsweep_factor;
}
// END WINGFLEX
rawpos = vertex.xyz;
vec4 ecPosition = gl_ModelViewMatrix * vertex;
//rawpos = gl_Vertex.xyz;
//vec4 ecPosition = gl_ModelViewMatrix * gl_Vertex;
//fog_Func(fogType);
VNormal = normalize(gl_NormalMatrix * gl_Normal);
vec3 n = normalize(gl_Normal);
vec3 tempTangent = cross(n, vec3(1.0,0.0,0.0));
vec3 tempBinormal = cross(n, tempTangent);
if (nmap_enabled > 0){
tempTangent = tangent;
tempBinormal = binormal;
}
VTangent = normalize(gl_NormalMatrix * tempTangent);
VBinormal = normalize(gl_NormalMatrix * tempBinormal);
vec3 t = tempTangent;
vec3 b = tempBinormal;
// Super hack: if diffuse material alpha is less than 1, assume a
// transparency animation is at work
if (gl_FrontMaterial.diffuse.a < 1.0)
alpha = gl_FrontMaterial.diffuse.a;
else
alpha = gl_Color.a;
// Vertex in eye coordinates
vertVec = ecPosition.xyz;
vViewVec.x = dot(t, vertVec);
vViewVec.y = dot(b, vertVec);
vViewVec.z = dot(n, vertVec);
// calculate the reflection vector
vec4 reflect_eye = vec4(reflect(vertVec, VNormal), 0.0);
vec3 reflVec_stat = normalize(gl_ModelViewMatrixInverse * reflect_eye).xyz;
if (refl_dynamic > 0){
//prepare rotation matrix
mat4 RotMatPR;
mat4 RotMatH;
float _roll = roll;
if (_roll>90.0 || _roll < -90.0)
{
_roll = -_roll;
}
float cosRx = cos(radians(_roll));
float sinRx = sin(radians(_roll));
float cosRy = cos(radians(-pitch));
float sinRy = sin(radians(-pitch));
float cosRz = cos(radians(hdg));
float sinRz = sin(radians(hdg));
rotationMatrixPR(sinRx, cosRx, sinRy, cosRy, RotMatPR);
rotationMatrixH(sinRz, cosRz, RotMatH);
vec3 reflVec_dyn = (RotMatH * (RotMatPR * normalize(gl_ModelViewMatrixInverse * reflect_eye))).xyz;
reflVec = reflVec_dyn;
} else {
reflVec = reflVec_stat;
}
gl_FrontColor = gl_FrontMaterial.emission + gl_Color
* (gl_LightModel.ambient + gl_LightSource[0].ambient);
gl_Position = gl_ModelViewProjectionMatrix * vertex;
//gl_Position = ftransform();
gl_TexCoord[0] = gl_TextureMatrix[0] * gl_MultiTexCoord0;
setupShadows(ecPosition);
}