264 lines
7.6 KiB
GLSL
264 lines
7.6 KiB
GLSL
|
// -*- mode: C; -*-
|
||
|
// Licence: GPL v2
|
||
|
// © Emilian Huminiuc and Vivian Meazza 2011
|
||
|
#version 120
|
||
|
|
||
|
|
||
|
|
||
|
// the file is directly copied from model-combined.eff except the (three) WINGFLEX to END WINGLFEX parts
|
||
|
// and the subsequent gl_Vertex integrations
|
||
|
// I didnt find how to do a more beautiful way (including model-combined and only adding the wingflexer part)
|
||
|
// if you know how to do this, please do :)
|
||
|
|
||
|
varying vec3 rawpos;
|
||
|
varying vec3 VNormal;
|
||
|
varying vec3 VTangent;
|
||
|
varying vec3 VBinormal;
|
||
|
varying vec3 vViewVec;
|
||
|
varying vec3 reflVec;
|
||
|
varying vec3 vertVec;
|
||
|
|
||
|
varying float alpha;
|
||
|
|
||
|
attribute vec3 tangent;
|
||
|
attribute vec3 binormal;
|
||
|
|
||
|
uniform float pitch;
|
||
|
uniform float roll;
|
||
|
uniform float hdg;
|
||
|
uniform int refl_dynamic;
|
||
|
uniform int nmap_enabled;
|
||
|
uniform int shader_qual;
|
||
|
|
||
|
// WINGFLEX
|
||
|
uniform int wingflex_type;
|
||
|
uniform float body_width;
|
||
|
uniform float wingflex_alpha;
|
||
|
uniform float wingflex_trailing_alpha;
|
||
|
uniform float wingsweep_factor;
|
||
|
uniform float wingflex_z;
|
||
|
uniform float wing_span;
|
||
|
uniform float rotation_x1;
|
||
|
uniform float rotation_y1;
|
||
|
uniform float rotation_z1;
|
||
|
uniform float rotation_x2;
|
||
|
uniform float rotation_y2;
|
||
|
uniform float rotation_z2;
|
||
|
uniform float rotation_rad;
|
||
|
// END WINGFLEX
|
||
|
|
||
|
//////Fog Include///////////
|
||
|
// uniform int fogType;
|
||
|
// void fog_Func(int type);
|
||
|
////////////////////////////
|
||
|
|
||
|
// WINGFLEX
|
||
|
vec2 calc_deflection(float y){
|
||
|
float distance;
|
||
|
float bwh = body_width/2;
|
||
|
if(y < bwh && y > -bwh){
|
||
|
//this part does not move
|
||
|
distance = 0;
|
||
|
}else if(y > bwh){
|
||
|
distance = y - bwh;
|
||
|
}else if(y < -bwh){
|
||
|
distance = y + bwh;
|
||
|
}
|
||
|
float max_dist = (wing_span-body_width)/2;
|
||
|
float deflection = wingflex_z * (distance*distance)/(max_dist*max_dist);
|
||
|
float delta_y;
|
||
|
if(y<0){
|
||
|
delta_y = deflection/wing_span;
|
||
|
}else{
|
||
|
delta_y = -deflection/wing_span;
|
||
|
}
|
||
|
vec2 returned = vec2 ( deflection, delta_y );
|
||
|
return returned;
|
||
|
}
|
||
|
// END WINGFLEX
|
||
|
|
||
|
void setupShadows(vec4 eyeSpacePos);
|
||
|
|
||
|
void rotationMatrixPR(in float sinRx, in float cosRx, in float sinRy, in float cosRy, out mat4 rotmat)
|
||
|
{
|
||
|
rotmat = mat4( cosRy , sinRx * sinRy , cosRx * sinRy, 0.0,
|
||
|
0.0 , cosRx , -sinRx * cosRx, 0.0,
|
||
|
-sinRy, sinRx * cosRy, cosRx * cosRy , 0.0,
|
||
|
0.0 , 0.0 , 0.0 , 1.0 );
|
||
|
}
|
||
|
|
||
|
void rotationMatrixH(in float sinRz, in float cosRz, out mat4 rotmat)
|
||
|
{
|
||
|
rotmat = mat4( cosRz, -sinRz, 0.0, 0.0,
|
||
|
sinRz, cosRz, 0.0, 0.0,
|
||
|
0.0 , 0.0 , 1.0, 0.0,
|
||
|
0.0 , 0.0 , 0.0, 1.0 );
|
||
|
}
|
||
|
|
||
|
void main(void)
|
||
|
{
|
||
|
// WINGFLEX
|
||
|
vec4 vertex = gl_Vertex;
|
||
|
|
||
|
if ( wingflex_type == 0 ) {
|
||
|
vec2 deflection = calc_deflection(vertex.y);
|
||
|
|
||
|
vertex.z += deflection[0];
|
||
|
vertex.y += deflection[1];
|
||
|
|
||
|
if(rotation_rad != 0){
|
||
|
vec2 defl1=calc_deflection(rotation_y1);
|
||
|
vec2 defl2=calc_deflection(rotation_y2);
|
||
|
float rot_y1 = rotation_y1;
|
||
|
float rot_z1 = rotation_z1;
|
||
|
float rot_y2 = rotation_y2;
|
||
|
float rot_z2 = rotation_z2;
|
||
|
rot_y1 -= defl1[1];
|
||
|
rot_z1 += defl1[0];
|
||
|
rot_y2 -= defl2[1];
|
||
|
rot_z2 += defl2[0];
|
||
|
//Calculate rotation
|
||
|
vec3 normal;
|
||
|
normal[0]=rotation_x2-rotation_x1;
|
||
|
normal[1]=rot_y2-rot_y1;
|
||
|
normal[2]=rot_z2-rot_z1;
|
||
|
normal = normalize(normal);
|
||
|
float tmp = (1-cos(rotation_rad));
|
||
|
mat4 rotation_matrix = mat4(
|
||
|
pow(normal[0],2)*tmp+cos(rotation_rad), normal[1]*normal[0]*tmp-normal[2]*sin(rotation_rad), normal[2]*normal[0]*tmp+normal[1]*sin(rotation_rad), 0.0,
|
||
|
normal[0]*normal[1]*tmp+normal[2]*sin(rotation_rad), pow(normal[1],2)*tmp+cos(rotation_rad), normal[2]*normal[1]*tmp-normal[0]*sin(rotation_rad), 0.0,
|
||
|
normal[0]*normal[2]*tmp-normal[1]*sin(rotation_rad), normal[1]*normal[2]*tmp+normal[0]*sin(rotation_rad), pow(normal[2],2)*tmp+cos(rotation_rad), 0.0,
|
||
|
0.0, 0.0, 0.0, 1.0
|
||
|
);
|
||
|
vec4 old_point;
|
||
|
old_point[0]=vertex.x;
|
||
|
old_point[1]=vertex.y;
|
||
|
old_point[2]=vertex.z;
|
||
|
old_point[3]=1.0;
|
||
|
rotation_matrix[3][0] = rotation_x1 - rotation_x1*rotation_matrix[0][0] - rot_y1*rotation_matrix[1][0] - rot_z1*rotation_matrix[2][0];
|
||
|
rotation_matrix[3][1] = rot_y1 - rotation_x1*rotation_matrix[0][1] - rot_y1*rotation_matrix[1][1] - rot_z1*rotation_matrix[2][1];
|
||
|
rotation_matrix[3][2] = rot_z1 - rotation_x1*rotation_matrix[0][2] - rot_y1*rotation_matrix[1][2] - rot_z1*rotation_matrix[2][2];
|
||
|
vec4 new_point=rotation_matrix*old_point;
|
||
|
vertex.x=new_point[0];
|
||
|
vertex.y=new_point[1];
|
||
|
vertex.z=new_point[2];
|
||
|
}
|
||
|
|
||
|
} else if (wingflex_type == 1 ) {
|
||
|
float arm_reach = 4.8;
|
||
|
|
||
|
float x_factor = max((abs(vertex.x) - body_width),0);
|
||
|
float y_factor = max(vertex.y,0.0);
|
||
|
float flex_factor1 = wingflex_alpha * (1.0 - wingsweep_factor);
|
||
|
float flex_factor2 = wingflex_trailing_alpha * (1.0 -wingsweep_factor);
|
||
|
|
||
|
|
||
|
if (flex_factor1<0.0) {flex_factor1 *=0.7;}
|
||
|
if (flex_factor2<0.0) {flex_factor1 *=0.7;}
|
||
|
|
||
|
// basic flapping motion is linear to arm_reach, then parabolic
|
||
|
|
||
|
float intercept_point = 0.1 * arm_reach * arm_reach * flex_factor1;
|
||
|
|
||
|
if (x_factor < arm_reach)
|
||
|
{
|
||
|
vertex.z += x_factor/arm_reach * intercept_point;
|
||
|
}
|
||
|
|
||
|
else
|
||
|
{
|
||
|
vertex.z += 0.1 * x_factor * x_factor * flex_factor1;
|
||
|
}
|
||
|
|
||
|
// upward stroke is slightly forward-swept, downward stroke a bit backward
|
||
|
vertex.y += -0.25 * abs(x_factor) * flex_factor1;
|
||
|
|
||
|
//trailing edge lags the motion
|
||
|
vertex.z += 0.2 * y_factor * x_factor * flex_factor2;
|
||
|
|
||
|
|
||
|
// if the wings are folded, we sweep them back
|
||
|
vertex.y += 0.5 * x_factor * wingsweep_factor;
|
||
|
float sweep_x = 0.5;
|
||
|
if (vertex.x > 0.0) {sweep_x = - 0.5;}
|
||
|
|
||
|
vertex.x+= sweep_x * (1.0 + 0.5 *x_factor) * wingsweep_factor;
|
||
|
|
||
|
|
||
|
}
|
||
|
// END WINGFLEX
|
||
|
|
||
|
rawpos = vertex.xyz;
|
||
|
vec4 ecPosition = gl_ModelViewMatrix * vertex;
|
||
|
//rawpos = gl_Vertex.xyz;
|
||
|
//vec4 ecPosition = gl_ModelViewMatrix * gl_Vertex;
|
||
|
//fog_Func(fogType);
|
||
|
|
||
|
VNormal = normalize(gl_NormalMatrix * gl_Normal);
|
||
|
|
||
|
vec3 n = normalize(gl_Normal);
|
||
|
vec3 tempTangent = cross(n, vec3(1.0,0.0,0.0));
|
||
|
vec3 tempBinormal = cross(n, tempTangent);
|
||
|
|
||
|
if (nmap_enabled > 0){
|
||
|
tempTangent = tangent;
|
||
|
tempBinormal = binormal;
|
||
|
}
|
||
|
|
||
|
VTangent = normalize(gl_NormalMatrix * tempTangent);
|
||
|
VBinormal = normalize(gl_NormalMatrix * tempBinormal);
|
||
|
vec3 t = tempTangent;
|
||
|
vec3 b = tempBinormal;
|
||
|
|
||
|
// Super hack: if diffuse material alpha is less than 1, assume a
|
||
|
// transparency animation is at work
|
||
|
if (gl_FrontMaterial.diffuse.a < 1.0)
|
||
|
alpha = gl_FrontMaterial.diffuse.a;
|
||
|
else
|
||
|
alpha = gl_Color.a;
|
||
|
|
||
|
// Vertex in eye coordinates
|
||
|
vertVec = ecPosition.xyz;
|
||
|
vViewVec.x = dot(t, vertVec);
|
||
|
vViewVec.y = dot(b, vertVec);
|
||
|
vViewVec.z = dot(n, vertVec);
|
||
|
|
||
|
// calculate the reflection vector
|
||
|
vec4 reflect_eye = vec4(reflect(vertVec, VNormal), 0.0);
|
||
|
vec3 reflVec_stat = normalize(gl_ModelViewMatrixInverse * reflect_eye).xyz;
|
||
|
if (refl_dynamic > 0){
|
||
|
//prepare rotation matrix
|
||
|
mat4 RotMatPR;
|
||
|
mat4 RotMatH;
|
||
|
float _roll = roll;
|
||
|
if (_roll>90.0 || _roll < -90.0)
|
||
|
{
|
||
|
_roll = -_roll;
|
||
|
}
|
||
|
float cosRx = cos(radians(_roll));
|
||
|
float sinRx = sin(radians(_roll));
|
||
|
float cosRy = cos(radians(-pitch));
|
||
|
float sinRy = sin(radians(-pitch));
|
||
|
float cosRz = cos(radians(hdg));
|
||
|
float sinRz = sin(radians(hdg));
|
||
|
rotationMatrixPR(sinRx, cosRx, sinRy, cosRy, RotMatPR);
|
||
|
rotationMatrixH(sinRz, cosRz, RotMatH);
|
||
|
vec3 reflVec_dyn = (RotMatH * (RotMatPR * normalize(gl_ModelViewMatrixInverse * reflect_eye))).xyz;
|
||
|
|
||
|
reflVec = reflVec_dyn;
|
||
|
} else {
|
||
|
reflVec = reflVec_stat;
|
||
|
}
|
||
|
|
||
|
|
||
|
gl_FrontColor = gl_FrontMaterial.emission + gl_Color
|
||
|
* (gl_LightModel.ambient + gl_LightSource[0].ambient);
|
||
|
|
||
|
gl_Position = gl_ModelViewProjectionMatrix * vertex;
|
||
|
//gl_Position = ftransform();
|
||
|
gl_TexCoord[0] = gl_TextureMatrix[0] * gl_MultiTexCoord0;
|
||
|
|
||
|
|
||
|
setupShadows(ecPosition);
|
||
|
}
|