easy-osm2city-podman/full/fgdata/Shaders/building-model-ALS-ultra.vert

188 lines
6.1 KiB
GLSL
Raw Normal View History

// -*- mode: C; -*-
// Licence: GPL v2
// © Emilian Huminiuc and Vivian Meazza 2011
#version 120
attribute vec3 instancePosition; // (x,y,z)
attribute vec3 instanceScale ; // (width, depth, height)
attribute vec3 attrib1; // Generic packed attributes
attribute vec3 attrib2;
varying vec3 rawpos;
varying vec3 VNormal;
varying vec3 VTangent;
varying vec3 VBinormal;
varying vec3 vViewVec;
varying vec3 vertVec;
varying vec3 reflVec;
varying float alpha;
attribute vec3 tangent;
attribute vec3 binormal;
uniform float pitch;
uniform float roll;
uniform float hdg;
uniform int refl_dynamic;
uniform int nmap_enabled;
uniform int shader_qual;
uniform int color_is_position;
//////Fog Include///////////
// uniform int fogType;
// void fog_Func(int type);
////////////////////////////
void setupShadows(vec4 eyeSpacePos);
void rotationMatrixPR(in float sinRx, in float cosRx, in float sinRy, in float cosRy, out mat4 rotmat)
{
rotmat = mat4( cosRy , sinRx * sinRy , cosRx * sinRy, 0.0,
0.0 , cosRx , -sinRx * cosRx, 0.0,
-sinRy, sinRx * cosRy, cosRx * cosRy , 0.0,
0.0 , 0.0 , 0.0 , 1.0 );
}
void rotationMatrixH(in float sinRz, in float cosRz, out mat4 rotmat)
{
rotmat = mat4( cosRz, -sinRz, 0.0, 0.0,
sinRz, cosRz, 0.0, 0.0,
0.0 , 0.0 , 1.0, 0.0,
0.0 , 0.0 , 0.0, 1.0 );
}
const float c_precision = 128.0;
const float c_precisionp1 = c_precision + 1.0;
vec3 float2vec(float value) {
vec3 val;
val.x = mod(value, c_precisionp1) / c_precision;
val.y = mod(floor(value / c_precisionp1), c_precisionp1) / c_precision;
val.z = floor(value / (c_precisionp1 * c_precisionp1)) / c_precision;
return val;
}
void main(void)
{
// Unpack generic attributes
vec3 attr1 = float2vec(attrib1.x);
vec3 attr2 = float2vec(attrib1.z);
vec3 attr3 = float2vec(attrib2.x);
// Determine the rotation for the building.
float sr = sin(6.28 * attr1.x);
float cr = cos(6.28 * attr1.x);
rawpos = gl_Vertex.xyz;
// Adjust the very top of the roof to match the rooftop scaling. This shapes
// the rooftop - gambled, gabled etc. These vertices are identified by gl_Color.z
rawpos.x = (1.0 - gl_Color.z) * rawpos.x + gl_Color.z * ((rawpos.x + 0.5) * attr3.z - 0.5);
rawpos.y = (1.0 - gl_Color.z) * rawpos.y + gl_Color.z * (rawpos.y * attrib2.y );
// Adjust pitch of roof to the correct height. These vertices are identified by gl_Color.z
// Scale down by the building height (instanceScale.z) because
// immediately afterwards we will scale UP the vertex to the correct scale.
rawpos.z = rawpos.z + gl_Color.z * attrib1.y / instanceScale.z;
rawpos = rawpos * instanceScale.xyz;
// Rotation of the building and movement into rawpos
rawpos.xy = vec2(dot(rawpos.xy, vec2(cr, sr)), dot(rawpos.xy, vec2(-sr, cr)));
rawpos = rawpos + instancePosition.xyz;
vec4 ecPosition = gl_ModelViewMatrix * vec4(rawpos, 1.0);
// Texture coordinates are stored as:
// - a separate offset (x0, y0) for the wall (wtex0x, wtex0y), and roof (rtex0x, rtex0y)
// - a semi-shared (x1, y1) so that the front and side of the building can have
// different texture mappings
//
// The vertex color value selects between them:
// gl_Color.x=1 indicates front/back walls
// gl_Color.y=1 indicates roof
// gl_Color.z=1 indicates top roof vertexs (used above)
// gl_Color.a=1 indicates sides
// Finally, the roof texture is on the right of the texture sheet
float wtex0x = attr1.y; // Front/Side texture X0
float wtex0y = attr1.z; // Front/Side texture Y0
float rtex0x = attr2.z; // Roof texture X0
float rtex0y = attr3.x; // Roof texture Y0
float wtex1x = attr2.x; // Front/Roof texture X1
float stex1x = attr3.y; // Side texture X1
float wtex1y = attr2.y; // Front/Roof/Side texture Y1
vec2 tex0 = vec2(sign(gl_MultiTexCoord0.x) * (gl_Color.x*wtex0x + gl_Color.y*rtex0x + gl_Color.a*wtex0x),
gl_Color.x*wtex0y + gl_Color.y*rtex0y + gl_Color.a*wtex0y);
vec2 tex1 = vec2(gl_Color.x*wtex1x + gl_Color.y*wtex1x + gl_Color.a*stex1x,
wtex1y);
gl_TexCoord[0].x = tex0.x + gl_MultiTexCoord0.x * tex1.x;
gl_TexCoord[0].y = tex0.y + gl_MultiTexCoord0.y * tex1.y;
// Rotate the normal.
vec3 normal = gl_Normal;
// Rotate the normal as per the building.
normal.xy = vec2(dot(normal.xy, vec2(cr, sr)), dot(normal.xy, vec2(-sr, cr)));
VNormal = normalize(gl_NormalMatrix * normal);
vec3 n = normalize(normal);
vec3 tempTangent = cross(n, vec3(1.0,0.0,0.0));
vec3 tempBinormal = cross(n, tempTangent);
if (nmap_enabled > 0){
tempTangent = tangent;
tempBinormal = binormal;
}
VTangent = normalize(gl_NormalMatrix * tempTangent);
VBinormal = normalize(gl_NormalMatrix * tempBinormal);
vec3 t = tempTangent;
vec3 b = tempBinormal;
// Super hack: if diffuse material alpha is less than 1, assume a
// transparency animation is at work
if (gl_FrontMaterial.diffuse.a < 1.0)
alpha = gl_FrontMaterial.diffuse.a;
else
alpha = 1.0;
// Vertex in eye coordinates
vertVec = ecPosition.xyz;
vViewVec.x = dot(t, vertVec);
vViewVec.y = dot(b, vertVec);
vViewVec.z = dot(n, vertVec);
// calculate the reflection vector
vec4 reflect_eye = vec4(reflect(vertVec, VNormal), 0.0);
vec3 reflVec_stat = normalize(gl_ModelViewMatrixInverse * reflect_eye).xyz;
if (refl_dynamic > 0){
//prepare rotation matrix
mat4 RotMatPR;
mat4 RotMatH;
float _roll = roll;
if (_roll>90.0 || _roll < -90.0)
{
_roll = -_roll;
}
float cosRx = cos(radians(_roll));
float sinRx = sin(radians(_roll));
float cosRy = cos(radians(-pitch));
float sinRy = sin(radians(-pitch));
float cosRz = cos(radians(hdg));
float sinRz = sin(radians(hdg));
rotationMatrixPR(sinRx, cosRx, sinRy, cosRy, RotMatPR);
rotationMatrixH(sinRz, cosRz, RotMatH);
vec3 reflVec_dyn = (RotMatH * (RotMatPR * normalize(gl_ModelViewMatrixInverse * reflect_eye))).xyz;
reflVec = reflVec_dyn;
} else {
reflVec = reflVec_stat;
}
gl_FrontColor = gl_FrontMaterial.emission + vec4(1.0,1.0,1.0,1.0)
* (gl_LightModel.ambient + gl_LightSource[0].ambient);
gl_Position = gl_ModelViewProjectionMatrix * vec4(rawpos,1.0);
setupShadows(ecPosition);
}