easy-osm2city-podman/full/fgdata/Shaders/ws30-ALS-ultra.frag

864 lines
34 KiB
GLSL
Raw Permalink Normal View History

// WS30 FRAGMENT SHADER
// -*-C++-*-
#version 130
#extension GL_EXT_texture_array : enable
// written by Thorsten Renk, Oct 2011, based on default.frag
//////////////////////////////////////////////////////////////////
// TEST PHASE TOGGLES AND CONTROLS
//
// Remove haze and lighting and shows just the texture.
// Useful for checking texture rendering and scenery.
// The compiler will likely optimise out the haze and lighting calculations.
// Possible values: 0:Normal, 1:Just the texture.
const int remove_haze_and_lighting = 0;
// Randomise texture lookups for 5 non-base textures e.g. mix_texture, detaile_texture etc.
// Each landclass is assigned 5 random textures from the ground texture array.
// This simulates a worst case possible texture lookup scenario, without needing access to material parameters.
// This does not simulate multiple texture sets, of which there may be up-to 4.
// The performance will likely be worse than in a real situation - there might be fewer textures
// for mix, detail and other textures. This might be easier on the GPUs texture caches.
// Possible values: 0: disabled (default),
// 1: enabled,
// 2: remove texture array lookups for 5 textures - only base texture + neighbour base textures
const int randomise_texture_lookups = 0;
// Use built-in water shader. Use for testing impact of ws30-water.frag
const int water_shader = 1;
//
// End of test phase controls
//////////////////////////////////////////////////////////////////
// Ambient term comes in gl_Color.rgb.
varying vec4 light_diffuse_comp;
varying vec3 normal;
varying vec3 relPos;
varying vec2 ground_tex_coord;
varying vec3 worldPos;
varying vec2 rawPos;
varying vec3 ecViewdir;
varying vec2 grad_dir;
varying vec4 ecPosition;
varying float steepness;
uniform sampler2D landclass;
uniform sampler2DArray textureArray;
uniform sampler2D perlin;
uniform float visibility;
uniform float avisibility;
uniform float scattering;
uniform float terminator;
uniform float terrain_alt;
uniform float hazeLayerAltitude;
uniform float overcast;
uniform float eye_alt;
uniform float snowlevel;
uniform float dust_cover_factor;
uniform float lichen_cover_factor;
uniform float wetness;
uniform float fogstructure;
uniform float snow_thickness_factor;
uniform float cloud_self_shading;
uniform float season;
uniform float air_pollution;
uniform float WindE;
uniform float WindN;
uniform float landing_light1_offset;
uniform float landing_light2_offset;
uniform float landing_light3_offset;
uniform float osg_SimulationTime;
uniform int wind_effects;
uniform int cloud_shadow_flag;
uniform int use_searchlight;
uniform int use_landing_light;
uniform int use_alt_landing_light;
// Testing code: Currently hardcoded to 2000, to allow noise functions to run while waiting for landclass lookup(s)
uniform int swatch_size; //in metres, typically 1000 or 2000
// Passed from VPBTechnique, not the Effect
uniform float fg_tileWidth;
uniform float fg_tileHeight;
uniform bool fg_photoScenery;
// Material parameters, from material definitions and effect defaults, for each landclass.
// xsize and ysize
uniform vec4 fg_dimensionsArray[128];
// RGBA ambient color
uniform vec4 fg_ambientArray[128];
// RGBA diffuse color
uniform vec4 fg_diffuseArray[128];
// RGBA specular color
uniform vec4 fg_specularArray[128];
// Indicies of textures in the ground texture array for different
// texture slots (grain, gradient, dot, mix, detail) for each landclass
uniform vec4 fg_textureLookup1[128];
uniform vec4 fg_textureLookup2[128];
// Each element of a vec4 contains a different materials parameter.
uniform vec4 fg_materialParams1[128];
uniform vec4 fg_materialParams2[128];
uniform vec4 fg_materialParams3[128];
// Coastline texture - generated from VPBTechnique
uniform sampler2D coastline;
// Sand texture
uniform sampler2D sand;
uniform mat4 fg_zUpTransform;
uniform vec3 fg_modelOffset;
const float terminator_width = 200000.0;
float shadow_func (in float x, in float y, in float noise, in float dist);
float DotNoise2D(in vec2 coord, in float wavelength, in float fractionalMaxDotSize, in float dot_density);
float Noise2D(in vec2 coord, in float wavelength);
float Noise3D(in vec3 coord, in float wavelength);
float SlopeLines2D(in vec2 coord, in vec2 gradDir, in float wavelength, in float steepness);
float Strata3D(in vec3 coord, in float wavelength, in float variation);
float fog_func (in float targ, in float alt);
float rayleigh_in_func(in float dist, in float air_pollution, in float avisibility, in float eye_alt, in float vertex_alt);
float alt_factor(in float eye_alt, in float vertex_alt);
float light_distance_fading(in float dist);
float fog_backscatter(in float avisibility);
vec3 rayleigh_out_shift(in vec3 color, in float outscatter);
vec3 get_hazeColor(in float light_arg);
vec3 searchlight();
vec3 landing_light(in float offset, in float offsetv);
vec3 filter_combined (in vec3 color) ;
float getShadowing();
vec3 getClusteredLightsContribution(vec3 p, vec3 n, vec3 texel);
// a fade function for procedural scales which are smaller than a pixel
float detail_fade (in float scale, in float angle, in float dist)
{
float fade_dist = 2000.0 * scale * angle/max(pow(steepness,4.0), 0.1);
return 1.0 - smoothstep(0.5 * fade_dist, fade_dist, dist);
}
//////////////////////////
// Test-phase code:
// These should be sent as uniforms
// Tile dimensions in meters
// vec2 tile_size = vec2(fg_tileWidth , fg_tileHeight);
// Testing: texture coords are sent flipped right now:
// Note tile_size is defined in the shader include: ws30-landclass-search-functions.frag.
//vec2 tile_size = vec2(fg_tileHeight , fg_tileWidth);
// Uniform array lookup functions example:
// Access data[] as if it was a 1-d array of floats
// with data sorted as rows of data values for each row of texture variants
// using index for the relevant value
/*
float getFloatFromArrayData(int i)
{
int n = int(floor(float(i/4.0)));
vec4 v4 = someArray[n];
int index_within_v4 = int(mod(float(i),4.0));
float value = v4[index_within_v4];
return value;
}
vec4 getVec4FromArrayData(int i)
{
return (vec4(getFloatFromArrayData(i), getFloatFromArrayData(i+1), getFloatFromArrayData(i+2), getFloatFromArrayData(i+3)));
}
*/
// From noise.frag
float rand2D(in vec2 co);
// Generates a full precision 32 bit random number from 2 seeds
// as well as 6 random integers between 0 and factor that are rescaled 0.0-1.0
// by re-using the significant figures from the full precision number.
// This avoids having to generate 6 random numbers when
// limited variation is needed: say 6 numbers with 100 levels (i.e between 0 and 100).
// Seed 2 is incremented so the function can be called again to generate
// a different set of numbers
float get6_rand_nums(in float PRNGseed1,
inout float PRNGseed2, float factor, out float [6] random_integers
);
// Create random landclasses without a texture lookup to stress test.
// Each square of square_size in m is assigned a random landclass value.
int get_random_landclass(in vec2 co, in vec2 tile_size);
// End Test-phase code
////////////////////////
// These functions, and other function they depend on, are defined
// in ws30-ALS-landclass-search.frag.
// Lookup a ground texture at a point based on the landclass at that point, without visible
// seams at coordinate discontinuities or at landclass boundaries where texture are switched.
// The partial derivatives of the tile_coord at the fragment is needed to adjust for
// the stretching of different textures, so that the correct mip-map level is looked
// up and there are no seams.
// Texture types: 0: base texture, 1: grain texture, 2: gradient texture, 3 dot texture,
// 4: mix texture, 5: detail texture.
vec4 lookup_ground_texture_array(in int texture_type, in vec2 ground_texture_coord, in int landclass_id,
in vec4 dFdx_and_dFdy);
// Look up the landclass id [0 .. 255] for this particular fragment.
// Lookup id of any neighbouring landclass that is within the search distance.
// Searches are performed in upto 4 directions right now, but only one landclass is looked up
// Create a mix factor werighting the influences of nearby landclasses
void get_landclass_id(in vec2 tile_coord, in vec4 dFdx_and_dFdy,
out int landclass_id, out ivec4 neighbor_landclass_ids,
out int num_unique_neighbors,out vec4 mix_factor
);
// Look up the texel of the specified texture type (e.g. grain or detail textures) for this fragment
// and any neighbor texels, then mix.
vec4 get_mixed_texel(in int texture_type, in vec2 g_texture_coord,
in int landclass_id, in int num_unique_neighbors,
in ivec4 neighbor_texel_landclass_ids, in vec4 neighbor_mix_factors,
in vec4 dFdx_and_dFdy
);
// Determine the texel and material parameters for a particular fragment,
// Taking into account photoscenery etc.
void get_material(in int landclass,
in vec2 ground_tex_coord,
in vec4 dxdy_gc,
out float mat_shininess,
out vec4 mat_ambient,
out vec4 mat_diffuse,
out vec4 mat_specular,
out vec4 dxdy,
out vec2 st
);
// Apply the ALS haze model to a specific fragment
vec4 applyHaze(inout vec4 fragColor,
inout vec3 hazeColor,
in vec3 secondary_light,
in float ct,
in float hazeLayerAltitude,
in float visibility,
in float avisibility,
in float dist,
in float lightArg,
in float mie_angle);
// Procedurally generate a water texel for this fragment
vec4 generateWaterTexel();
void main()
{
float yprime_alt = light_diffuse_comp.a;
//diffuse_term.a = 1.0;
float mie_angle = gl_Color.a;
float effective_scattering = min(scattering, cloud_self_shading);
// distance to fragment
float dist = length(relPos);
// angle of view vector with horizon
float ct = dot(vec3(0.0, 0.0, 1.0), relPos)/dist;
// float altitude of fragment above sea level
float msl_altitude = (relPos.z + eye_alt);
// this is taken from default.frag
float NdotL, NdotHV, fogFactor;
vec3 n = normalize(normal);
vec3 lightDir = gl_LightSource[0].position.xyz;
vec3 halfVector = normalize(normalize(lightDir) + normalize(ecViewdir));
vec3 secondary_light = vec3 (0.0,0.0,0.0);
// Material/texel properties
float mat_shininess;
vec2 st;
vec4 mat_ambient, mat_diffuse, mat_specular, dxdy;
vec4 texel;
vec4 snow_texel;
vec4 detail_texel;
vec4 mix_texel;
vec4 grain_texel;
vec4 dot_texel;
vec4 gradient_texel;
vec4 fragColor;
vec4 specular = vec4(0.0);
float intensity;
// Wind motion of the overlay noise simulating movement of vegetation and loose debris
vec2 windPos;
if (wind_effects > 1)
{
float windSpeed = length(vec2 (WindE,WindN)) /3.0480;
// interfering sine wave wind pattern
float sineTerm = sin(0.35 * windSpeed * osg_SimulationTime + 0.05 * (rawPos.x + rawPos.y));
sineTerm = sineTerm + sin(0.3 * windSpeed * osg_SimulationTime + 0.04 * (rawPos.x + rawPos.y));
sineTerm = sineTerm + sin(0.22 * windSpeed * osg_SimulationTime + 0.05 * (rawPos.x + rawPos.y));
sineTerm = sineTerm/3.0;
// non-linear amplification to simulate gusts
sineTerm = sineTerm * sineTerm;//smoothstep(0.2, 1.0, sineTerm);
// wind starts moving dust and leaves at around 8 m/s
float timeArg = 0.01 * osg_SimulationTime * windSpeed * smoothstep(8.0, 15.0, windSpeed);
timeArg = timeArg + 0.02 * sineTerm;
windPos = vec2 (rawPos.x + WindN * timeArg, rawPos.y + WindE * timeArg);
}
else
{
windPos = rawPos.xy;
}
// get noise at different wavelengths in units of swatch_size
// original assumed 4km texture.
// used: 5m, 5m gradient, 10m, 10m gradient: heightmap of the closeup terrain, 10m also snow
// 50m: detail texel
// 250m: detail texel
// 500m: distortion and overlay
// 1500m: overlay, detail, dust, fog
// 2000m: overlay, detail, snow, fog
// Perlin noise
float noise_10m = Noise2D(rawPos.xy, 10.0);
float noise_5m = Noise2D(rawPos.xy ,5.0);
float noise_2m = Noise2D(rawPos.xy ,2.0);
float noise_1m = Noise2D(rawPos.xy ,1.0);
float noise_01m = Noise2D(windPos.xy, 0.1);
// Noise relative to swatch size
float noise_25m = Noise2D(rawPos.xy, swatch_size*0.000625);
float noise_50m = Noise2D(rawPos.xy, swatch_size*0.00125);
float noise_250m = Noise3D(worldPos.xyz,swatch_size*0.0625);
float noise_500m = Noise3D(worldPos.xyz, swatch_size*0.125);
float noise_1500m = Noise3D(worldPos.xyz, swatch_size*0.3750);
float noise_2000m = Noise3D(worldPos.xyz, swatch_size*0.5);
float noise_4000m = Noise3D(worldPos.xyz, swatch_size);
float dotnoisegrad_10m;
// slope noise
float slopenoise_50m = SlopeLines2D(rawPos.xy, grad_dir, 50.0, steepness);
float slopenoise_100m = SlopeLines2D(rawPos.xy, grad_dir, 100.0, steepness);
float snownoise_25m = mix(noise_25m, slopenoise_50m, clamp(3.0*(1.0-steepness),0.0,1.0));
float snownoise_50m = mix(noise_50m, slopenoise_100m, clamp(3.0*(1.0-steepness),0.0,1.0));
// get the texels
float distortion_factor = 1.0;
vec2 stprime;
int flag = 1;
int mix_flag = 1;
float noise_term;
float snow_alpha;
// Oct 27 2021:
// Geometry is in the form of roughly rectangular 'tiles'
// with a mesh forming a grid with regular spacing.
// Each vertex in the mesh is given an elevation
// Tile dimensions in m
// Testing: created from two float uniforms in global scope. Should be sent as a vec2
// vec2 tile_size
// Tile texture coordinates range [0..1] over the tile 'rectangle'
vec2 tile_coord = gl_TexCoord[0].st;
// Testing code: Coordinate used by ground texture arrays
//vec2 ground_tex_coord = gl_TexCoord[0].st;
// Test phase: Constants and toggles for transitions between landlcasses are defined at
// the top landclass-search-functions.frag.
// There are some controls for haze and lighting at the top of this file.
// Look up the landclass id [0 .. 255] for this particular fragment
// and any neighbouring landclass that is close.
// Each tile has 1 texture containing landclass ids stetched over it.
// Landclass for current fragment, and up-to 4 neighboring landclasses - 2 used currently
int lc;
ivec4 lc_n;
int num_unique_neighbors = 0;
// Mix factor of base textures for 2 neighbour landclass(es)
vec4 mfact;
bool water = false;
// Partial derivatives of s and t of ground texture coords for this fragment,
// with respect to window (screen space) x and y axes.
// Used to pick mipmap LoD levels, and turn off unneeded procedural detail
// dFdx and dFdy are packed in a vec4 so multiplying everything
// to scale takes 1 instruction slot.
vec4 dxdy_gc = vec4(dFdx(ground_tex_coord) , dFdy(ground_tex_coord));
get_landclass_id(tile_coord, dxdy_gc, lc, lc_n, num_unique_neighbors, mfact);
get_material(lc, ground_tex_coord, dxdy_gc, mat_shininess, mat_ambient, mat_diffuse, mat_specular, dxdy, st);
vec4 coast = texture2D(coastline, tile_coord);
if (fg_photoScenery) {
// The photoscenery orthophotos are stored in the landclass texture
// and use normalised tile coordinates
texel = texture(landclass, vec2(tile_coord.s, 1.0 - tile_coord.t));
water = (texture(coastline, vec2(tile_coord.s, tile_coord.t)).r > 0.1);
// Do not attempt any mixing
flag = 0;
mix_flag = 0;
} else if (coast.g > 0.1) {
texel = lookup_ground_texture_array(0, tile_coord, lc, dxdy);
water = texture(landclass, vec2(tile_coord.s, tile_coord.t)).z > 0.9;
} else {
// Lookup the base texture texel for this fragment and any neighbors, with mixing
texel = get_mixed_texel(0, ground_tex_coord, lc, num_unique_neighbors, lc_n, mfact, dxdy_gc);
water = texture(landclass, vec2(tile_coord.s, tile_coord.t)).z > 0.9;
}
vec4 color = gl_Color * mat_ambient;
color.a = 1.0;
// Testing code: mix with green to show values of variables at each point
//vec4 green = vec4(0.0, 0.5, 0.0, 0.0);
//texel = mix(texel, green, (mfact[2]));
float steep = 0.9;
float steepToBeach = 0.93;
float beachToWater = 0.95;
float waterStart = 0.97;
if ((coast.b > 0.05) || (water && steepness < (waterStart + 0.02))) {
float waterline_min_steepness = fg_materialParams3[lc].y;
float waterline_max_steepness = fg_materialParams3[lc].z;
vec4 steep_texel = lookup_ground_texture_array(2, ground_tex_coord, lc, dxdy_gc); // Uses the same index as the gradient texture, which it is
vec4 beach_texel = texture2D(sand, ground_tex_coord); // Use the dot texture, which is overloaded to be the beach texture
texel = mix(steep_texel, beach_texel, smoothstep(steep, steepToBeach, steepness));
fragColor = mix(texel, generateWaterTexel(), smoothstep(beachToWater,waterStart,steepness));
fragColor.rgb += getClusteredLightsContribution(ecPosition.xyz, n, fragColor.rgb);
} else if (water) {
fragColor = generateWaterTexel();
fragColor.rgb += getClusteredLightsContribution(ecPosition.xyz, n, fragColor.rgb);
} else {
// Lookup material parameters for the landclass at this fragment.
// Material parameters are from material definitions XML files (e.g. regional definitions in data/Materials/regions). They have the same names.
// These parameters are contained in arrays of uniforms fg_materialParams1 and fg_materialParams2.
// The uniforms are vec4s, and each parameter is mapped to a vec4 element (rgba channels).
// In WS2 these parameters were available as uniforms of the same name.
// Testing: The mapping is hardcoded at the moment.
float transition_model = fg_materialParams1[lc].r;
float hires_overlay_bias = fg_materialParams1[lc].g;
float grain_strength = fg_materialParams1[lc].b;
float intrinsic_wetness = fg_materialParams1[lc].a;
float dot_density = fg_materialParams2[lc].r;
float dot_size = fg_materialParams2[lc].g;
float dust_resistance = fg_materialParams2[lc].b;
int rock_strata = int(fg_materialParams2[lc].a);
// dot noise
float dotnoise_2m = DotNoise2D(rawPos.xy, 2.0 * dot_size,0.5, dot_density);
float dotnoise_10m = DotNoise2D(rawPos.xy, 10.0 * dot_size, 0.5, dot_density);
float dotnoise_15m = DotNoise2D(rawPos.xy, 15.0 * dot_size, 0.33, dot_density);
// Testing code - set randomise_texture_lookups = 2 to only look up the base texture with no extra transitions.
detail_texel = texel;
mix_texel = texel;
grain_texel = texel;
dot_texel = texel;
gradient_texel = texel;
/*
// Texture lookup testing code:
// To test this block, uncomment it and turn off normal and random texture lookups
// by setting randomise_texture_lookups = 2 or more.
int tex2;
// Grain texture is material texture 14, which is mapped to the r channel of fg_textureLookup2
tex2 = int(fg_textureLookup2[lc].r * 255.0 + 0.5);
grain_texel = texture(textureArray, vec3(gl_TexCoord[0].st * 1.3, tex2));
// Gradient texture is material texture 13, which is mapped to the a channel of fg_textureLookup1
tex2 = int(fg_textureLookup1[lc].a * 255.0 + 0.5);
gradient_texel = texture(textureArray, vec3(gl_TexCoord[0].st * 1.3, tex2));
// Dot texture is material texture 15, which is mapped to the g channel of fg_textureLookup2
tex2 = int(fg_textureLookup2[lc].g * 255.0 + 0.5);
dot_texel = texture(textureArray, vec3(gl_TexCoord[0].st * 1.3, tex2));
// Mix texture is material texture 12, which is mapped to the b channel of fg_textureLookup1
tex2 = int(fg_textureLookup1[lc].b * 255.0 + 0.5);
mix_texel = texture(textureArray, vec3(gl_TexCoord[0].st * 1.3, tex2));
if (mix_texel.a < 0.1) { mix_flag = 0;} // Disable if no index found
// Detail texture is material texture 11, which is mapped to the g channel of fg_textureLookup1
tex2 = int(fg_textureLookup1[lc].g * 255.0 + 0.5);
detail_texel = texture(textureArray, vec3(gl_TexCoord[0].st * 1.3, tex2));
if (detail_texel.a < 0.1) { flag = 0;} // Disable if no index found
//Examples of how lookup_ground_texture array is used with the above grain/gradient texture lookups:
//grain_texel = lookup_ground_texture_array(1, st * 1.3, lc, dxdy * 1.3);
//gradient_texel = lookup_ground_texture_array(2, st * 1.3, lc, dxdy * 1.3);
*/
// Generate 6 random numbers
float pseed2 = 1.0;
int tex_id_lc[6];
float rn[6];
if (randomise_texture_lookups == 1)
{
get6_rand_nums(float(lc)*33245.31, pseed2, 47.0, rn);
for (int i=0;i<6;i++) tex_id_lc[i] = int(mod( (float(lc)+(rn[i]*47.0)+1.0) , 48.0));
}
//texel = mix(vec4(vec3(0.0),1.0), vec4(0.0,0.5,0.0,1.0), float(tex_id_lc[2])/48.0);
// WS2:
//grain_texel = texture2D(grain_texture, gl_TexCoord[0].st * 25.0);
//gradient_texel = texture2D(gradient_texture, gl_TexCoord[0].st * 4.0);
//stprime = gl_TexCoord[0].st * 80.0;
//stprime = stprime + normalize(relPos).xy * 0.01 * (dotnoise_10m + dotnoise_15m);
//dot_texel = texture2D(dot_texture, vec2 (stprime.y, stprime.x) );
if (randomise_texture_lookups == 0)
{
grain_texel = lookup_ground_texture_array(1, st * 25.0, lc, dxdy * 25.0);
gradient_texel = lookup_ground_texture_array(2, st * 4.0, lc, dxdy * 4.0);
}
else if (randomise_texture_lookups == 1)
{
grain_texel = lookup_ground_texture_array(0, st * 25.0, tex_id_lc[0], dxdy * 25.0);
gradient_texel = lookup_ground_texture_array(0, st * 4.0, tex_id_lc[1], dxdy * 4.0);
}
stprime = st * 80.0;
stprime = stprime + normalize(relPos).xy * 0.01 * (dotnoise_10m + dotnoise_15m);
vec4 dxdy_prime = vec4(dFdx(stprime), dFdy(stprime));
if (randomise_texture_lookups == 0)
{
dot_texel = lookup_ground_texture_array(3, stprime.ts, lc, dxdy_prime.tsqp);
}
else if (randomise_texture_lookups == 1)
{
dot_texel = lookup_ground_texture_array(0, stprime.ts, tex_id_lc[2], dxdy_prime.tsqp);
}
// Testing: WS2 code after this, except for random texture lookups and partial derivatives
float local_autumn_factor = texel.a;
// we need to fade procedural structures when they get smaller than a single pixel, for this we need
// to know under what angle we see the surface
float view_angle = abs(dot(normalize(normal), normalize(ecViewdir)));
// the snow texel is generated procedurally
if (msl_altitude +500.0 > snowlevel)
{
snow_texel = vec4 (0.95, 0.95, 0.95, 1.0) * (0.9 + 0.1* noise_500m + 0.1* (1.0 - noise_10m) );
snow_texel.r = snow_texel.r * (0.9 + 0.05 * (noise_10m + noise_5m));
snow_texel.g = snow_texel.g * (0.9 + 0.05 * (noise_10m + noise_5m));
snow_texel.a = 1.0;
noise_term = 0.1 * (noise_500m-0.5) ;
noise_term = noise_term + 0.2 * (snownoise_50m -0.5) * detail_fade(50.0, view_angle, 0.5*dist) ;
noise_term = noise_term + 0.2 * (snownoise_25m -0.5) * detail_fade(25.0, view_angle, 0.5*dist) ;
noise_term = noise_term + 0.3 * (noise_10m -0.5) * detail_fade(10.0, view_angle, 0.8*dist) ;
noise_term = noise_term + 0.3 * (noise_5m - 0.5) * detail_fade(5.0, view_angle, dist);
noise_term = noise_term + 0.15 * (noise_2m -0.5) * detail_fade(2.0, view_angle, dist);
noise_term = noise_term + 0.08 * (noise_1m -0.5) * detail_fade(1.0, view_angle, dist);
snow_texel.a = snow_texel.a * 0.2+0.8* smoothstep(0.2,0.8, 0.3 +noise_term + snow_thickness_factor +0.0001*(msl_altitude -snowlevel) );
}
if (mix_flag == 1)
{
//WS2: mix_texel = texture2D(mix_texture, gl_TexCoord[0].st * 1.3);
if (randomise_texture_lookups == 0)
{
mix_texel = lookup_ground_texture_array(4, st * 1.3, lc, dxdy * 1.3);
}
else if (randomise_texture_lookups == 1)
{
mix_texel = lookup_ground_texture_array(0, st * 1.3, tex_id_lc[3], dxdy * 1.3);
}
if (mix_texel.a <0.1) {mix_flag = 0;}
}
// the hires overlay texture is loaded with parallax mapping
if (flag == 1)
{
stprime = vec2 (0.86*st.s + 0.5*st.t, 0.5*st.s - 0.86*st.t);
distortion_factor = 0.97 + 0.06 * noise_500m;
stprime = stprime * distortion_factor * 15.0;
stprime = stprime + normalize(relPos).xy * 0.022 * (noise_10m + 0.5 * noise_5m +0.25 * noise_2m - 0.875 );
//WS2: detail_texel = texture2D(detail_texture, stprime); // temp
dxdy_prime = vec4(dFdx(stprime), dFdy(stprime));
if (randomise_texture_lookups == 0)
{
detail_texel = lookup_ground_texture_array(5, stprime , lc, dxdy_prime);
}
else if (randomise_texture_lookups == 1)
{
detail_texel = lookup_ground_texture_array(0, stprime, tex_id_lc[4], dxdy_prime);
}
if (detail_texel.a <0.1) {flag = 0;}
} // End if (flag == 1)
// texture preparation according to detail level
// mix in hires texture patches
float dist_fact;
float nSum;
float mix_factor;
// first the second texture overlay
// transition model 0: random patch overlay without any gradient information
// transition model 1: only gradient-driven transitions, no randomness
if (mix_flag == 1)
{
nSum = 0.167 * (noise_4000m + 2.0 * noise_2000m + 2.0 * noise_1500m + noise_500m);
nSum = mix(nSum, 0.5, max(0.0, 2.0 * (transition_model - 0.5)));
nSum = nSum + 0.4 * (1.0 -smoothstep(0.9,0.95, abs(steepness)+ 0.05 * (noise_50m - 0.5))) * min(1.0, 2.0 * transition_model);
mix_factor = smoothstep(0.5, 0.54, nSum);
texel = mix(texel, mix_texel, mix_factor);
local_autumn_factor = texel.a;
}
// then the detail texture overlay
mix_factor = 0.0;
//WS2: condition was broken up - does it matter for dynamic branching?
if ((flag == 1) && (dist < 40000.0))
{
dist_fact = 0.1 * smoothstep(15000.0,40000.0, dist) - 0.03 * (1.0 - smoothstep(500.0,5000.0, dist));
nSum = ((1.0 -noise_2000m) + noise_1500m + 2.0 * noise_250m +noise_50m)/5.0;
nSum = nSum - 0.08 * (1.0 -smoothstep(0.9,0.95, abs(steepness)));
mix_factor = smoothstep(0.47, 0.54, nSum +hires_overlay_bias- dist_fact);
if (mix_factor > 0.8) {mix_factor = 0.8;}
texel = mix(texel, detail_texel,mix_factor);
}
// rock for very steep gradients
if (gradient_texel.a > 0.0)
{
texel = mix(texel, gradient_texel, 1.0 - smoothstep(0.75,0.8,abs(steepness)+ 0.00002* msl_altitude + 0.05 * (noise_50m - 0.5)));
local_autumn_factor = texel.a;
}
// strata noise
float stratnoise_50m;
float stratnoise_10m;
// Testing: if rock_strata parameter is not cast into int, need (rock_strata > 0.99)
if (rock_strata==1)
{
stratnoise_50m = Strata3D(vec3 (rawPos.x, rawPos.y, msl_altitude), 50.0, 0.2);
stratnoise_10m = Strata3D(vec3 (rawPos.x, rawPos.y, msl_altitude), 10.0, 0.2);
stratnoise_50m = mix(stratnoise_50m, 1.0, smoothstep(0.8,0.9, steepness));
stratnoise_10m = mix(stratnoise_10m, 1.0, smoothstep(0.8,0.9, steepness));
texel *= (0.4 + 0.4 * stratnoise_50m + 0.2 * stratnoise_10m);
}
// the dot vegetation texture overlay
texel.rgb = mix(texel.rgb, dot_texel.rgb, dot_texel.a * (dotnoise_10m + dotnoise_15m) * detail_fade(1.0 * (dot_size * (1.0 +0.1*dot_size)), view_angle,dist));
texel.rgb = mix(texel.rgb, dot_texel.rgb, dot_texel.a * dotnoise_2m * detail_fade(0.1 * dot_size, view_angle,dist));
// then the grain texture overlay
texel.rgb = mix(texel.rgb, grain_texel.rgb, grain_strength * grain_texel.a * (1.0 - mix_factor) * (1.0-smoothstep(2000.0,5000.0, dist)));
// for really hires, add procedural noise overlay
texel.rgb = texel.rgb * (1.0 + 0.4 * (noise_01m-0.5) * detail_fade(0.1, view_angle, dist)) ;
// autumn colors
float autumn_factor = season * 2.0 * (1.0 - local_autumn_factor) ;
texel.r = min(1.0, (1.0 + 2.5 * autumn_factor) * texel.r);
texel.g = texel.g;
texel.b = max(0.0, (1.0 - 4.0 * autumn_factor) * texel.b);
if (local_autumn_factor < 1.0)
{
intensity = length(texel.rgb) * (1.0 - 0.5 * smoothstep(1.1,2.0,season));
texel.rgb = intensity * normalize(mix(texel.rgb, vec3(0.23,0.17,0.08), smoothstep(1.1,2.0, season)));
}
// slope line overlay
texel.rgb = texel.rgb * (1.0 - 0.12 * slopenoise_50m - 0.08 * slopenoise_100m);
//const vec4 dust_color = vec4 (0.76, 0.71, 0.56, 1.0);
const vec4 dust_color = vec4 (0.76, 0.65, 0.45, 1.0);
const vec4 lichen_color = vec4 (0.17, 0.20, 0.06, 1.0);
// mix vegetation
float gradient_factor = smoothstep(0.5, 1.0, steepness);
texel = mix(texel, lichen_color, gradient_factor * (0.4 * lichen_cover_factor + 0.8 * lichen_cover_factor * 0.5 * (noise_10m + (1.0 - noise_5m))) );
// mix dust
texel = mix(texel, dust_color, clamp(0.5 * dust_cover_factor *dust_resistance + 3.0 * dust_cover_factor * dust_resistance *(((noise_1500m - 0.5) * 0.125)+0.125 ),0.0, 1.0) );
// mix snow
float snow_mix_factor = 0.0;
if (msl_altitude + 500.0 > snowlevel)
{
snow_alpha = smoothstep(0.75, 0.85, abs(steepness));
snow_mix_factor = snow_texel.a* smoothstep(snowlevel, snowlevel+200.0, snow_alpha * msl_altitude+ (noise_2000m + 0.1 * noise_10m -0.55) *400.0);
texel = mix(texel, snow_texel, snow_mix_factor);
}
// get distribution of water when terrain is wet
float combined_wetness = min(1.0, wetness + intrinsic_wetness);
float water_threshold1;
float water_threshold2;
float water_factor =0.0;
if ((dist < 5000.0) && (combined_wetness>0.0))
{
water_threshold1 = 1.0-0.5* combined_wetness;
water_threshold2 = 1.0 - 0.3 * combined_wetness;
water_factor = smoothstep(water_threshold1, water_threshold2 , (0.3 * (2.0 * (1.0-noise_10m) + (1.0 -noise_5m)) * (1.0 - smoothstep(2000.0, 5000.0, dist))) - 5.0 * (1.0 -steepness));
}
// darken wet terrain
texel.rgb = texel.rgb * (1.0 - 0.6 * combined_wetness);
// light computations
vec4 light_specular = gl_LightSource[0].specular;
// If gl_Color.a == 0, this is a back-facing polygon and the
// normal should be reversed.
//n = (2.0 * gl_Color.a - 1.0) * normal;
vec3 n = normal;//vec3 (nvec.x, nvec.y, sqrt(1.0 -pow(nvec.x,2.0) - pow(nvec.y,2.0) ));
n = normalize(n);
NdotL = dot(n, lightDir);
float noisegrad_10m = (noise_10m - Noise2D(rawPos.xy+ 0.05 * normalize(lightDir.xy),10.0))/0.05;
float noisegrad_5m = (noise_5m - Noise2D(rawPos.xy+ 0.05 * normalize(lightDir.xy),5.0))/0.05;
float noisegrad_2m = (noise_2m - Noise2D(rawPos.xy+ 0.05 * normalize(lightDir.xy),2.0))/0.05;
float noisegrad_1m = (noise_1m - Noise2D(rawPos.xy+ 0.05 * normalize(lightDir.xy),1.0))/0.05;
dotnoisegrad_10m = (dotnoise_10m - DotNoise2D(rawPos.xy+ 0.05 * normalize(lightDir.xy),10.0 * dot_size,0.5, dot_density))/0.05;
NdotL = NdotL + (noisegrad_10m * detail_fade(10.0, view_angle,dist) + 0.5* noisegrad_5m * detail_fade(5.0, view_angle,dist)) * mix_factor/0.8;
NdotL = NdotL + 0.15 * noisegrad_2m * mix_factor/0.8 * detail_fade(2.0,view_angle,dist);
NdotL = NdotL + 0.1 * noisegrad_2m * detail_fade(2.0,view_angle,dist);
NdotL = NdotL + 0.05 * noisegrad_1m * detail_fade(1.0, view_angle,dist);
NdotL = NdotL + (1.0-snow_mix_factor) * 0.3* dot_texel.a * (0.5* dotnoisegrad_10m * detail_fade(1.0 * dot_size, view_angle, dist) +0.5 * dotnoisegrad_10m * noise_01m * detail_fade(0.1, view_angle, dist)) ;
// Testing: Very temporary - reduce procedural normal map features with photoscenery active without breaking profiling as the controls are default (by request)
if (fg_photoScenery) NdotL = mix(dot(n, lightDir), NdotL, 0.00001);
if (NdotL > 0.0)
{
float shadowmap = getShadowing();
if (cloud_shadow_flag == 1) {NdotL = NdotL * shadow_func(relPos.x, relPos.y, 0.3 * noise_250m + 0.5 * noise_500m+0.2 * noise_1500m, dist);}
vec4 diffuse_term = light_diffuse_comp * mat_diffuse;
color += diffuse_term * NdotL * shadowmap;
NdotHV = max(dot(n, halfVector), 0.0);
if (mat_shininess > 0.0)
specular.rgb = ((mat_specular.rgb * 0.1 + (water_factor * vec3 (1.0, 1.0, 1.0)))
* light_specular.rgb
* pow(NdotHV, mat_shininess + (20.0 * water_factor))
* shadowmap);
}
color.a = 1.0;//diffuse_term.a; // as gl_Color.a and light_diffuse.comp.a were packed with other values
// This shouldn't be necessary, but our lighting becomes very
// saturated. Clamping the color before modulating by the texture
// is closer to what the OpenGL fixed function pipeline does.
color = clamp(color, 0.0, 1.0);
if (use_searchlight == 1) {
secondary_light += searchlight();
}
if (use_landing_light == 1) {
secondary_light += landing_light(landing_light1_offset, landing_light3_offset);
}
if (use_alt_landing_light == 1) {
secondary_light += landing_light(landing_light2_offset, landing_light3_offset);
}
color.rgb += secondary_light * light_distance_fading(dist);
fragColor = color * texel + specular;
fragColor.rgb += getClusteredLightsContribution(ecPosition.xyz, n, texel.rgb);
}
float lightArg = (terminator-yprime_alt)/100000.0;
vec3 hazeColor = get_hazeColor(lightArg);
// Rayleigh color shift due to out-scattering
float rayleigh_length = 0.5 * avisibility * (2.5 - 1.9 * air_pollution)/alt_factor(eye_alt, msl_altitude);
float outscatter = 1.0-exp(-dist/rayleigh_length);
fragColor.rgb = rayleigh_out_shift(fragColor.rgb,outscatter);
// Rayleigh color shift due to in-scattering
float rShade = 1.0 - 0.9 * smoothstep(-terminator_width+ terminator, terminator_width + terminator, yprime_alt + 420000.0);
//float lightIntensity = length(diffuse_term.rgb)/1.73 * rShade;
float lightIntensity = length(hazeColor * effective_scattering) * rShade;
vec3 rayleighColor = vec3 (0.17, 0.52, 0.87) * lightIntensity;
float rayleighStrength = rayleigh_in_func(dist, air_pollution, avisibility/max(lightIntensity,0.05), eye_alt, msl_altitude);
fragColor.rgb = mix(fragColor.rgb, rayleighColor,rayleighStrength);
gl_FragColor = applyHaze(fragColor, hazeColor, secondary_light, ct, hazeLayerAltitude, visibility, avisibility, dist, lightArg, mie_angle);
// Testing phase controls:
if (remove_haze_and_lighting == 1)
{
gl_FragColor = texel;
}
}