easy-osm2city-podman/full/fgdata/Shaders/hud-ALS.frag

291 lines
9.5 KiB
GLSL
Raw Permalink Normal View History

// -*-C++-*-
#version 120
varying vec2 rawPos;
varying vec2 nPos;
varying vec3 vertPos;
varying vec3 normal;
varying vec3 refl_vec;
varying vec3 light_diffuse;
varying float splash_angle;
varying float Mie;
varying float ambient_fraction;
uniform sampler2D texture;
uniform sampler2D frost_texture;
uniform sampler2D func_texture;
uniform samplerCube cube_texture;
uniform samplerCube cube_light_texture;
uniform vec4 tint;
uniform vec3 overlay_color;
uniform float rain_norm;
uniform float ground_splash_norm;
uniform float frost_level;
uniform float fog_level;
uniform float reflection_strength;
uniform float overlay_alpha;
uniform float overlay_glare;
uniform float splash_x;
uniform float splash_y;
uniform float splash_z;
uniform float lightmap_r_factor;
uniform float lightmap_g_factor;
uniform float lightmap_b_factor;
uniform float lightmap_a_factor;
uniform float osg_SimulationTime;
uniform float sample_res;
uniform float sample_far;
uniform float hud_brightness;
uniform int use_reflection;
uniform int use_reflection_lightmap;
uniform int use_mask;
uniform int use_wipers;
uniform int use_overlay;
uniform int adaptive_mapping;
uniform int lightmap_multi;
uniform vec3 lightmap_r_color;
uniform vec3 lightmap_g_color;
uniform vec3 lightmap_b_color;
uniform vec3 lightmap_a_color;
float DotNoise2D(in vec2 coord, in float wavelength, in float fractionalMaxDotSize, in float dot_density);
float DropletNoise2D(in vec2 coord, in float wavelength, in float fractionalMaxDotSize, in float dot_density);
float Noise2D(in vec2 coord, in float wavelength);
vec3 filter_combined (in vec3 color) ;
void main()
{
vec4 texel;
vec4 frost_texel;
vec4 func_texel;
texel = texture2D(texture, gl_TexCoord[0].st);
texel+= texture2D(texture, vec2 (gl_TexCoord[0].s + sample_res, gl_TexCoord[0].t));
texel+= texture2D(texture, vec2 (gl_TexCoord[0].s - sample_res, gl_TexCoord[0].t));
texel+= texture2D(texture, vec2 (gl_TexCoord[0].s, gl_TexCoord[0].t + sample_res));
texel+= texture2D(texture, vec2 (gl_TexCoord[0].s, gl_TexCoord[0].t - sample_res));
texel+= 0.75* texture2D(texture, vec2 (gl_TexCoord[0].s + sample_far * sample_res, gl_TexCoord[0].t+ sample_far * sample_res));
texel+= 0.75* texture2D(texture, vec2 (gl_TexCoord[0].s - sample_far * sample_res, gl_TexCoord[0].t+ sample_far * sample_res));
texel+= 0.75* texture2D(texture, vec2 (gl_TexCoord[0].s + sample_far * sample_res, gl_TexCoord[0].t- sample_far * sample_res));
texel+= 0.75* texture2D(texture, vec2 (gl_TexCoord[0].s - sample_far * sample_res, gl_TexCoord[0].t- sample_far * sample_res));
texel+= 0.5 * texture2D(texture, vec2 (gl_TexCoord[0].s + 2.0 * sample_far * sample_res, gl_TexCoord[0].t - sample_res));
texel+= 0.5 * texture2D(texture, vec2 (gl_TexCoord[0].s - 2.0 * sample_far * sample_res, gl_TexCoord[0].t + sample_res));
texel+= 0.5 * texture2D(texture, vec2 (gl_TexCoord[0].s - sample_res, gl_TexCoord[0].t + 2.0 * sample_far * sample_res));
texel+= 0.5 * texture2D(texture, vec2 (gl_TexCoord[0].s + sample_res, gl_TexCoord[0].t - 2.0 * sample_far * sample_res));
texel/=10.0;
float threshold_high = max(hud_brightness, 0.05) * 0.7;
float threshold_low = max(hud_brightness, 0.05) * 0.4;
float threshold_mid = max(hud_brightness, 0.05) * 0.5;
texel.rgb = mix(texel.rgb, vec3 (1.0, 1.0, 1.0), smoothstep(threshold_mid, threshold_high, texel.a));
texel.rgb = mix(texel.rgb, vec3 (0.0, 0.0, 0.0), 1.0 - smoothstep(0.0, threshold_low, texel.a));
texel *=gl_Color;
vec2 frost_coords;
if (adaptive_mapping == 1) {frost_coords = gl_TexCoord[0].st * 7.0;}
else if (adaptive_mapping ==2) {frost_coords = nPos * 7.0;}
else {frost_coords = vertPos.xy * 7.0;}
frost_texel = texture2D(frost_texture, frost_coords);
func_texel = texture2D(func_texture, gl_TexCoord[0].st * 2.0);
float noise_003m = Noise2D(vertPos.xy, 0.03);
float noise_0003m = Noise2D(vertPos.xy, 0.003);
// environment reflection, including a lightmap for the reflections
vec4 reflection = textureCube(cube_texture, refl_vec);
vec4 reflection_lighting = textureCube(cube_light_texture, refl_vec);
vec3 lightmapcolor = vec3(0.0, 0.0, 0.0);
if (use_reflection_lightmap == 1)
{
vec4 lightmapFactor = vec4(lightmap_r_factor, lightmap_g_factor, lightmap_b_factor, lightmap_a_factor);
if (lightmap_multi > 0 )
{
lightmapFactor = lightmapFactor * reflection_lighting;
lightmapcolor = lightmap_r_color * lightmapFactor.r +
lightmap_g_color * lightmapFactor.g +
lightmap_b_color * lightmapFactor.b +
lightmap_a_color * lightmapFactor.a ;
}
else
{
lightmapcolor = reflection_lighting.rgb * lightmap_r_color * lightmapFactor.r;
}
}
float lightmap_intensity = length(lightmapcolor);
float light_fraction = clamp(lightmap_intensity / (length(light_diffuse.rgb) + 0.01), 0.0, 5.0);
if (light_fraction < 1.0) {light_fraction = smoothstep(0.7, 1.0, light_fraction);}
if (use_reflection ==1)
{
// to determine whether what we see reflected is currently in light, we make the somewhat drastic
// assumption that its normal will be opposite to the glass normal
// (which is mostly truish in a normal cockpit)
float reflection_shade = ambient_fraction + (1.0-ambient_fraction) * max(0.0, dot (normalize(normal), normalize(gl_LightSource[0].position.xyz)));
texel.rgb = mix(texel.rgb, reflection.rgb, (reflection_strength * reflection_shade * (1.0-Mie)));
}
//texel.rgb = mix(texel.rgb, lightmapcolor.rgb, lightmap_intensity);
// overlay pattern
if ((use_mask == 1) && (use_overlay==1))
{
vec4 overlay_texel = vec4(overlay_color, overlay_alpha);
overlay_texel.rgb *= light_diffuse.rgb* (1.0 + (1.0 + overlay_glare)*Mie);
overlay_texel.a *=(1.0 + overlay_glare* Mie);
texel = mix(texel, overlay_texel, func_texel.b * overlay_texel.a);
}
// frost
float fth = (1.0-frost_level) * 0.4 + 0.3;
float fbl = 0.2 * frost_level;
float frost_factor = (fbl + (1.0-fbl)* smoothstep(fth,fth+0.2,noise_003m)) * (4.0 + 4.0* Mie);
float background_frost = 0.5 * smoothstep(0.7,1.0,frost_level);
frost_texel.rgb = mix(frost_texel.rgb, vec3 (0.5,0.5,0.5), (1.0- smoothstep(0.0,0.02,frost_texel.a)));
frost_texel.a =max(frost_texel.a, background_frost * (1.0- smoothstep(0.0,0.02,frost_texel.a)));
frost_texel *= vec4(light_diffuse.rgb,0.5) * (1.0 + 3.0 * Mie);
frost_factor = max(frost_factor, 0.8*background_frost);
texel.rgb = mix(texel.rgb, frost_texel.rgb, frost_texel.a * frost_factor * smoothstep(0.0,0.1,frost_level));
texel.a = max(texel.a, frost_texel.a * frost_level);
// rain splashes
vec3 splash_vec = vec3 (splash_x, splash_y, splash_z);
float splash_speed = length(splash_vec);
float rain_factor = 0.0;
float rnorm = max(rain_norm, ground_splash_norm);
if (rnorm > 0.0)
{
float droplet_size = (0.5 + 0.8 * rnorm) * (1.0 - 0.1 * splash_speed);
vec2 rainPos = vec2 (rawPos.x * splash_speed, rawPos.y / splash_speed );
rainPos.y = rainPos.y - 0.1 * smoothstep(1.0,2.0, splash_speed) * osg_SimulationTime;
if (splash_angle> 0.0)
{
// the dynamically impacting raindrops
float time_shape = 1.0;
float base_rate = 6.0 + 3.0 * rnorm + 4.0 * (splash_speed - 1.0);
float base_density = 0.6 * rnorm + 0.4 * (splash_speed -1.0);
if ((use_mask ==1)&&(use_wipers==1)) {base_density *= (1.0 - 0.5 * func_texel.g);}
float time_fact1 = (sin(base_rate*osg_SimulationTime));
float time_fact2 = (sin(base_rate*osg_SimulationTime + 1.570));
float time_fact3 = (sin(base_rate*osg_SimulationTime + 3.1415));
float time_fact4 = (sin(base_rate*osg_SimulationTime + 4.712));
time_fact1 = smoothstep(0.0,1.0, time_fact1);
time_fact2 = smoothstep(0.0,1.0, time_fact2);
time_fact3 = smoothstep(0.0,1.0, time_fact3);
time_fact4 = smoothstep(0.0,1.0, time_fact4);
rain_factor += DotNoise2D(rawPos.xy, 0.02 * droplet_size ,0.5, base_density ) * time_fact1;
rain_factor += DotNoise2D(rainPos.xy, 0.03 * droplet_size,0.4, base_density) * time_fact2;
rain_factor += DotNoise2D(rawPos.xy, 0.04 * droplet_size ,0.3, base_density)* time_fact3;
rain_factor += DotNoise2D(rainPos.xy, 0.05 * droplet_size ,0.25, base_density)* time_fact4;
}
// the static pattern of small droplets created by the splashes
float sweep = min(1./splash_speed,1.0);
if ((use_mask ==1)&&(use_wipers==1)) {sweep *= (1.0 - func_texel.g);}
if (adaptive_mapping ==2) {rainPos = nPos;}
rain_factor += DropletNoise2D(rainPos.xy, 0.02 * droplet_size ,0.5, 0.6* rnorm * sweep);
rain_factor += DotNoise2D(rainPos.xy, 0.012 * droplet_size ,0.7, 0.6* rnorm * sweep);
}
rain_factor = smoothstep(0.1,0.2, rain_factor) * (1.0 - smoothstep(0.4,1.0, rain_factor) * (0.2+0.8*noise_0003m));
vec4 rainColor = vec4 (0.2,0.2, 0.2, 0.6 - 0.3 * smoothstep(1.0,2.0, splash_speed));
rainColor.rgb *= length(light_diffuse)/1.73;
// glass tint
vec4 outerColor = mix(texel, rainColor, rain_factor);
// now mix illuminated reflections in
vec3 reflLitColor = reflection.rgb * lightmapcolor.rgb;
outerColor.rgb = mix(outerColor.rgb, reflLitColor, clamp(reflection_strength * light_fraction,0.0,1.0));
outerColor.a = max(outerColor.a, 0.1 * light_fraction * reflection_strength);
outerColor *= tint;
// fogging - this is inside the glass
vec4 fog_texel = vec4 (0.6,0.6,0.6, fog_level);
if (use_mask == 1) {fog_texel.a = fog_texel.a * func_texel.r;}
fog_texel *= vec4(light_diffuse.rgb,1.0);
fog_texel.rgb *= (1.0 + 3.0 * Mie);
fog_texel.a *= min((1.0 + 0.5 * Mie), 0.85);
vec4 fragColor;
fragColor.rgb = mix(outerColor.rgb, fog_texel.rgb, fog_texel.a);
fragColor.a = max(outerColor.a, fog_texel.a);
fragColor.rgb = filter_combined(fragColor.rgb);
gl_FragColor = clamp(fragColor,0.0,1.0);
}