A320-homecockpit/Pedestal/firmware/src/main.rs
fly 245abdcf6b Working saving and loading of callibration
Signed-off-by: fly <merspieler@alwaysdata.com>
2024-05-13 23:34:20 +02:00

299 lines
7.6 KiB
Rust

#![deny(unsafe_code)]
#![no_main]
#![no_std]
// Silence certain clippy warnings
#![allow(non_upper_case_globals)]
#![allow(clippy::needless_late_init)]
mod device;
use panic_halt as _;
use cortex_m::asm::delay;
use cortex_m_rt::entry;
use stm32f1xx_hal::{
adc,
gpio::{Analog, Pin},
pac,
prelude::*,
timer::{Channel, Tim2NoRemap},
flash::{FlashWriter, FLASH_START, FlashSize, SectorSize},
usb::{Peripheral, UsbBus},
};
use usb_device::prelude::*;
use usbd_human_interface_device::prelude::*;
use crate::device::{CustomConfig, CustomInputReport};
use bytemuck::{bytes_of, bytes_of_mut, try_from_bytes, Pod, Zeroable};
// Set layout version
const FLASH_LAYOUT_VERSION: u16 = 0;
struct MyPins {
pa1: Pin<'A', 1, Analog>,
pa2: Pin<'A', 2, Analog>,
}
#[derive(Pod)]
#[repr(C)]
#[derive(Copy)]
#[derive(Clone)]
#[derive(Zeroable)]
struct CalibrationData {
min: u16,
max: u16,
factor: f32,
}
impl CalibrationData {
const ADC_MAX: u16 = 4095;
const _dummy: () = {
let size = core::mem::size_of::<CalibrationData>();
assert!(size <= 1021, "CalibrationData too big for flash size!");
};
fn new (min: u16, max: u16) -> CalibrationData {
return CalibrationData {min, max, factor: calculate_factor(min, max)};
}
}
#[derive(Pod)]
#[repr(C)]
#[derive(Copy)]
#[derive(Clone)]
#[derive(Zeroable)]
struct Calibration {
integ_lt: CalibrationData,
// flood_lt: CalibrationData,
}
impl Calibration {
fn new () -> Calibration {
return Calibration {
integ_lt: CalibrationData::new(0, CalibrationData::ADC_MAX),
// flood_lt: CalibrationData::new(0, CalibrationData::ADC_MAX),
};
}
}
#[entry]
fn main() -> ! {
// ====================== general setup =================
// Acquire peripherals
// let cp = cortex_m::Peripherals::take().unwrap();
let p = pac::Peripherals::take().unwrap();
let mut flash = p.FLASH.constrain();
let rcc = p.RCC.constrain();
// Setup GPIOA
let mut gpioa = p.GPIOA.split();
// configure clock
let clocks = rcc
.cfgr
.use_hse(16.MHz())
.sysclk(48.MHz())
.pclk1(24.MHz())
.freeze(&mut flash.acr);
// ====================== USB setup =================
assert!(clocks.usbclk_valid());
let mut usb_dp = gpioa.pa12.into_push_pull_output(&mut gpioa.crh);
usb_dp.set_low();
delay(clocks.sysclk().raw() / 100);
let usb = Peripheral {
usb: p.USB,
pin_dm: gpioa.pa11,
pin_dp: usb_dp.into_floating_input(&mut gpioa.crh),
};
let usb_bus = UsbBus::new(usb);
let mut consumer = UsbHidClassBuilder::new()
.add_device(CustomConfig::default())
.build(&usb_bus);
let mut usb_dev = UsbDeviceBuilder::new(&usb_bus, UsbVidPid(0x16c0, 0x27dd))
.manufacturer("FLC Meow")
.product("Pedestal box")
.serial_number("01189998819991197253")
.build();
// ====================== ADC setup =================
let mut adc1 = adc::Adc::adc1(p.ADC1, clocks);
// ====================== Calibration ===============
let mut calibration_active = false;
let mut calibration_min_done = false;
let mut flash_writer = flash.writer(SectorSize::Sz1K, FlashSize::Sz64K);
let mut cal = load_calibration(&mut flash_writer);
// ====================== Pin setup =================
let mut input_pins = MyPins {
pa1: gpioa.pa1.into_analog(&mut gpioa.crl),
pa2: gpioa.pa2.into_analog(&mut gpioa.crl),
};
let mut last = get_report(&mut input_pins, &mut adc1, &cal);
// ====================== PWM setup =================
let mut afio = p.AFIO.constrain();
let c1 = gpioa.pa0.into_alternate_push_pull(&mut gpioa.crl);
let mut pwm = p
.TIM2
.pwm_hz::<Tim2NoRemap, _, _>(c1, &mut afio.mapr, 1.kHz(), &clocks);
pwm.enable(Channel::C1);
let pwm_max = pwm.get_max_duty(); //48000 in our case
// ====================== Main loop =================
loop {
let report = get_report(&mut input_pins, &mut adc1, &cal);
if report != last {
match consumer.device().write_report(&report) {
Err(UsbHidError::WouldBlock) => {}
Ok(_) => {
last = report;
}
Err(e) => {
core::panic!("Failed to write consumer report: {:?}", e)
}
}
}
if usb_dev.poll(&mut [&mut consumer]) {
match consumer.device().read_report() {
Err(UsbHidError::WouldBlock) => {}
Ok(output) => {
// Set backlight brightness
let pwm_val: u16;
if output.integ_lt > pwm_max {
pwm_val = pwm_max;
}
else {
pwm_val = output.integ_lt;
}
pwm.set_duty(Channel::C1, pwm_val);
// Check generic input field
// Calibration bit
if output.generic & 0x1 == 0x1 {
calibration_active = true;
if !calibration_min_done && output.generic & 0x2 == 0x2 {
cal.integ_lt.min = adc1.read(&mut input_pins.pa1).unwrap();
calibration_min_done = true;
}
}
else {
if calibration_active {
let max = adc1.read(&mut input_pins.pa1).unwrap();
if max > cal.integ_lt.min {
cal.integ_lt.max = max;
}
else {
cal.integ_lt.max = CalibrationData::ADC_MAX;
}
cal.integ_lt.factor = calculate_factor(cal.integ_lt.min, cal.integ_lt.max);
let save_success = save_calibration(&mut flash_writer, &cal);
if save_success {
pwm.set_duty(Channel::C1, pwm_max);
}
}
calibration_active = false;
calibration_min_done = false;
}
}
Err(e) => {
core::panic!("Failed to write consumer report: {:?}", e)
}
}
}
}
}
// Calculate factor from min and max
fn calculate_factor(min: u16, max: u16) -> f32 {
return CalibrationData::ADC_MAX as f32 / (CalibrationData::ADC_MAX - min - (CalibrationData::ADC_MAX - max)) as f32;
}
// Returns a CustomInputReport from the inputs given
fn get_report(pins: &mut MyPins, adc1: &mut adc::Adc<pac::ADC1>, cal: &Calibration) -> CustomInputReport {
let integ_lt: u16 = adc1.read(&mut pins.pa1).unwrap();
let flood_lt: u16 = adc1.read(&mut pins.pa2).unwrap();
let buttons: u16 = 0;
let integ_lt_norm: u16;
if integ_lt < cal.integ_lt.min {
integ_lt_norm = 0;
}
else if integ_lt > cal.integ_lt.max {
integ_lt_norm = CalibrationData::ADC_MAX;
}
else {
integ_lt_norm = ((integ_lt - cal.integ_lt.min) as f32 * cal.integ_lt.factor) as u16;
}
CustomInputReport {
x: integ_lt_norm,
y: flood_lt,
buttons,
}
}
// Save calibration to flash
fn save_calibration(flash: &mut FlashWriter, cal: &Calibration) -> bool {
let mut data: [u8; 1024] = [0; 1024];
let encoded_layout_version = bytes_of(&FLASH_LAYOUT_VERSION);
data[0..2].copy_from_slice(encoded_layout_version);
data[2] = 1; // Calibration available bit
let encoded_calibration_data = bytes_of(cal);
data[3..][..encoded_calibration_data.len()].copy_from_slice(encoded_calibration_data);
// Verify deactivation due to bug, see https://github.com/stm32-rs/stm32f1xx-hal/issues/330
flash.change_verification(false);
flash.erase(64512, 1024).unwrap();
flash.change_verification(true);
match flash.write(64512, &data) {
Ok(_ret) => return true,
Err(_e) => return false,
};
}
// Load calibration to flash
fn load_calibration(flash: &mut FlashWriter) -> Calibration {
let mut cal = Calibration::new();
match flash.read(64512, 1023) {
Ok(data) => {
// Check if data is available and return early if not suitable
if data[2] != 1 {
return cal;
}
// Check if data is in compatible version and return early if not suitable
match try_from_bytes::<u16>(&data[0..2]) {
Ok(flash_version) => {
if flash_version != &FLASH_LAYOUT_VERSION {
return cal
}
},
Err(_e) => {
return cal
},
}
// Load calibration data
let dummy = bytes_of(&cal);
let dummy2 = &data[3..][..dummy.len()];
let mut dummy3 = bytes_of_mut(&mut cal);
dummy3.copy_from_slice(&dummy2);
return cal;
},
Err(_e) => {
return cal
},
};
}