A320-homecockpit/Pedestal/PedestalConnectBox/firmware/src/main.rs

584 lines
20 KiB
Rust
Raw Normal View History

#![deny(unsafe_code)]
#![no_main]
#![no_std]
// Silence certain clippy warnings
#![allow(non_upper_case_globals)]
#![allow(clippy::needless_late_init)]
#![allow(clippy::needless_return)]
mod device;
use panic_halt as _;
use cortex_m::asm::delay;
use cortex_m_rt::entry;
use stm32f1xx_hal::{
adc,
gpio::{Pin, Input, Analog, PullDown, Output, PushPull},
pac,
prelude::*,
timer::{Tim2FullRemap},
flash::{FlashWriter, FlashSize, SectorSize},
usb::{Peripheral, UsbBus},
};
// TODO SPI
use usb_device::prelude::*;
use usbd_human_interface_device::prelude::*;
use crate::device::{CustomConfig, CustomInputReport};
use bytemuck::{bytes_of, bytes_of_mut, try_from_bytes, Pod, Zeroable};
// Set layout version
const FLASH_LAYOUT_VERSION: u16 = 0;
macro_rules! define_output_states {
($bit:literal, $pin:ident, $output:ident, $io_pins:ident) => {
if $output.leds & $bit == $bit {
$io_pins.$pin.set_high();
}
else {
$io_pins.$pin.set_low();
}
};
}
macro_rules! define_ecam_output_states_row {
($index:literal, $pin:ident, $ecam_row:ident, $io_pins:ident) => {
if $ecam_row[$index] == 1 {
$io_pins.$pin.set_high();
}
else {
$io_pins.$pin.set_low();
}
};
}
macro_rules! define_ecam_output_states_col {
($index:literal, $pin:ident, $ecam_col:ident, $io_pins:ident) => {
if $ecam_col[$index] == 1 {
$io_pins.$pin.set_high();
}
else {
$io_pins.$pin.set_low();
}
};
}
struct MyPins {
// Analog Inputs
pa2: Pin<'A', 2, Analog>, // Speed Brake
pa3: Pin<'A', 3, Analog>, // Parking Brake
pa5: Pin<'A', 5, Analog>, // Flaps
pa6: Pin<'A', 6, Analog>, // Gravity Gear Extension
pa7: Pin<'A', 7, Analog>, // Flood Light Pedestal
pb0: Pin<'B', 0, Analog>, // Upper ECAM Brightness
pb1: Pin<'B', 1, Analog>, // Lower ECAM Brightness
pc0: Pin<'C', 0, Analog>, // Flood Light MIP
pc1: Pin<'C', 1, Analog>, // Integ Light
pc2: Pin<'C', 2, Analog>, // Weather Radar Tilt
pc3: Pin<'C', 3, Analog>, // Weather Radar Gain
// Inputs
pa0: Pin<'A', 0, Input<PullDown>>, // Rudder Trim Reset
pa1: Pin<'A', 1, Input<PullDown>>, // Rudder Trim Left
pa4: Pin<'A', 4, Input<PullDown>>, // Spoiler Arm
pa8: Pin<'A', 8, Input<PullDown>>, // Switching ATT Captain
pa9: Pin<'A', 9, Input<PullDown>>, // Switching AIR Captain
pa10: Pin<'A', 10, Input<PullDown>>, // Switching ATT FO
pb4: Pin<'B', 4, Input<PullDown>>, // Weather Radar MAP
pb5: Pin<'B', 5, Input<PullDown>>, // Weather Radar PWS
pb8: Pin<'B', 8, Input<PullDown>>, // Door Unlock
pb9: Pin<'B', 9, Input<PullDown>>, // Door Lock
pc4: Pin<'C', 4, Input<PullDown>>, // DFDR
pc5: Pin<'C', 5, Input<PullDown>>, // AIDS
pc6: Pin<'C', 6, Input<PullDown>>, // Switching EIS Captain
pc9: Pin<'C', 9, Input<PullDown>>, // Switching AIR FO
pc13: Pin<'C', 13, Input<PullDown>>, // Engine Mode Crank
pc14: Pin<'C', 14, Input<PullDown>>, // Engine Mode Start
pc15: Pin<'C', 15, Input<PullDown>>, // Rudder Trim Right
pd1: Pin<'D', 1, Input<PullDown>>, // Weather Radar System 1
pd3: Pin<'D', 3, Input<PullDown>>, // Weather Radar System 2
pd4: Pin<'D', 4, Input<PullDown>>, // Weather Radar Multiscan
pd5: Pin<'D', 5, Input<PullDown>>, // Weather Radar WX+T
pd6: Pin<'D', 6, Input<PullDown>>, // Weather Radar CCS
pd7: Pin<'D', 7, Input<PullDown>>, // Weather Radar TURB
pd13: Pin<'D', 13, Input<PullDown>>, // Switching ECAM FO
pd14: Pin<'D', 14, Input<PullDown>>, // Switching ECAM Captain
pd15: Pin<'D', 15, Input<PullDown>>, // Switching EIS FO
pe0: Pin<'E', 0, Input<PullDown>>, // Door Video
pe5: Pin<'E', 5, Input<PullDown>>, // Engine 1 Master
pe6: Pin<'E', 6, Input<PullDown>>, // Engine 2 Master
// Outputs
pb6: Pin<'B', 6, Output<PushPull>>, // Door Fault Light
pb7: Pin<'B', 7, Output<PushPull>>, // Door Open Light
pb11: Pin<'B', 11, Output<PushPull>>, // ECAM LEDs Column 6
pb12: Pin<'B', 12, Output<PushPull>>, // ECAM LEDs Row 1
pc7: Pin<'C', 7, Output<PushPull>>, // ECAM LEDs Column 2
pc8: Pin<'C', 8, Output<PushPull>>, // ECAM LEDs Column 3
pd8: Pin<'D', 8, Output<PushPull>>, // ECAM LEDs Column 5
pd9: Pin<'D', 9, Output<PushPull>>, // ECAM LEDs Column 1
pd10: Pin<'D', 10, Output<PushPull>>, // ECAM LEDs Column 4
pe1: Pin<'E', 1, Output<PushPull>>, // Engine 1 Fire
pe2: Pin<'E', 2, Output<PushPull>>, // Engine 1 Fault
pe3: Pin<'E', 3, Output<PushPull>>, // Engine 2 Fault
pe4: Pin<'E', 4, Output<PushPull>>, // Engine 2 Fire
pe9: Pin<'E', 9, Output<PushPull>>, // ECAM LEDs Row 3
pe13: Pin<'E', 13, Output<PushPull>>, // ECAM LEDs Row 2
// TODO ECAM matrix pins
}
#[derive(Pod)]
#[repr(C)]
#[derive(Copy)]
#[derive(Clone)]
#[derive(Zeroable)]
struct CalibrationData {
min: u16,
max: u16,
factor: f32,
}
impl CalibrationData {
const ADC_MAX: u16 = 4095;
fn new (min: u16, max: u16) -> CalibrationData {
return CalibrationData {min, max, factor: calculate_factor(min, max)};
}
}
#[derive(Pod)]
#[repr(C)]
#[derive(Copy)]
#[derive(Clone)]
#[derive(Zeroable)]
struct Calibration {
data: [CalibrationData; 11],
}
impl Calibration {
const _dummy: () = {
let size = core::mem::size_of::<Calibration>();
assert!(size <= 1021, "Calibration too big for flash size!");
};
fn new () -> Calibration {
return Calibration {
data: [CalibrationData::new(0, CalibrationData::ADC_MAX); 11],
};
}
}
#[entry]
fn main() -> ! {
// ====================== general setup =================
// Acquire peripherals
let p = pac::Peripherals::take().unwrap();
let mut flash = p.FLASH.constrain();
let rcc = p.RCC.constrain();
// Setup GPIOA
let mut gpioa = p.GPIOA.split();
let mut gpiob = p.GPIOB.split();
let mut gpioc = p.GPIOC.split();
let mut gpiod = p.GPIOD.split();
let mut gpioe = p.GPIOE.split();
// configure clock
let clocks = rcc
.cfgr
.use_hse(16.MHz())
.sysclk(48.MHz())
.pclk1(24.MHz())
.freeze(&mut flash.acr);
let mut afio = p.AFIO.constrain();
let (pa15, _pb3, pb4) = afio.mapr.disable_jtag(gpioa.pa15, gpiob.pb3, gpiob.pb4); // To allow us to use pa15 and pb4
// ====================== USB setup =================
assert!(clocks.usbclk_valid());
let mut usb_dp = gpioa.pa12.into_push_pull_output(&mut gpioa.crh);
usb_dp.set_low();
delay(clocks.sysclk().raw() / 100);
let usb = Peripheral {
usb: p.USB,
pin_dm: gpioa.pa11,
pin_dp: usb_dp.into_floating_input(&mut gpioa.crh),
};
let usb_bus = UsbBus::new(usb);
let mut consumer = UsbHidClassBuilder::new()
.add_device(CustomConfig::default())
.build(&usb_bus);
let mut usb_dev = UsbDeviceBuilder::new(&usb_bus, UsbVidPid(0x16c0, 0x27dd))
.manufacturer("FLC Meow")
.product("Pedestal box")
.serial_number("01189998819991197250")
.build();
// ====================== ADC setup =================
let mut adc1 = adc::Adc::adc1(p.ADC1, clocks);
// ====================== Calibration ===============
let mut calibration_active = false;
let mut calibration_min_done = false;
let mut flash_writer = flash.writer(SectorSize::Sz1K, FlashSize::Sz64K);
let mut cal = load_calibration(&mut flash_writer);
// ====================== Pin setup =================
let mut io_pins = MyPins {
// Analog Inputs
pa2: gpioa.pa2.into_analog(&mut gpioa.crl),
pa3: gpioa.pa3.into_analog(&mut gpioa.crl),
pa5: gpioa.pa5.into_analog(&mut gpioa.crl),
pa6: gpioa.pa6.into_analog(&mut gpioa.crl),
pa7: gpioa.pa7.into_analog(&mut gpioa.crl),
pb0: gpiob.pb0.into_analog(&mut gpiob.crl),
pb1: gpiob.pb1.into_analog(&mut gpiob.crl),
pc0: gpioc.pc0.into_analog(&mut gpioc.crl),
pc1: gpioc.pc1.into_analog(&mut gpioc.crl),
pc2: gpioc.pc2.into_analog(&mut gpioc.crl),
pc3: gpioc.pc3.into_analog(&mut gpioc.crl),
// Inputs
pa0: gpioa.pa0.into_pull_down_input(&mut gpioa.crl),
pa1: gpioa.pa1.into_pull_down_input(&mut gpioa.crl),
pa4: gpioa.pa4.into_pull_down_input(&mut gpioa.crl),
pa8: gpioa.pa8.into_pull_down_input(&mut gpioa.crh),
pa9: gpioa.pa9.into_pull_down_input(&mut gpioa.crh),
pa10: gpioa.pa10.into_pull_down_input(&mut gpioa.crh),
pb4: pb4.into_pull_down_input(&mut gpiob.crl),
pb5: gpiob.pb5.into_pull_down_input(&mut gpiob.crl),
pb8: gpiob.pb8.into_pull_down_input(&mut gpiob.crh),
pb9: gpiob.pb9.into_pull_down_input(&mut gpiob.crh),
pc4: gpioc.pc4.into_pull_down_input(&mut gpioc.crl),
pc5: gpioc.pc5.into_pull_down_input(&mut gpioc.crl),
pc6: gpioc.pc6.into_pull_down_input(&mut gpioc.crl),
pc9: gpioc.pc9.into_pull_down_input(&mut gpioc.crh),
pc13: gpioc.pc13.into_pull_down_input(&mut gpioc.crh),
pc14: gpioc.pc14.into_pull_down_input(&mut gpioc.crh),
pc15: gpioc.pc15.into_pull_down_input(&mut gpioc.crh),
pd1: gpiod.pd1.into_pull_down_input(&mut gpiod.crl),
pd3: gpiod.pd3.into_pull_down_input(&mut gpiod.crl),
pd4: gpiod.pd4.into_pull_down_input(&mut gpiod.crl),
pd5: gpiod.pd5.into_pull_down_input(&mut gpiod.crl),
pd6: gpiod.pd6.into_pull_down_input(&mut gpiod.crl),
pd7: gpiod.pd7.into_pull_down_input(&mut gpiod.crl),
pd13: gpiod.pd13.into_pull_down_input(&mut gpiod.crh),
pd14: gpiod.pd14.into_pull_down_input(&mut gpiod.crh),
pd15: gpiod.pd15.into_pull_down_input(&mut gpiod.crh),
pe0: gpioe.pe0.into_pull_down_input(&mut gpioe.crl),
pe5: gpioe.pe5.into_pull_down_input(&mut gpioe.crl),
pe6: gpioe.pe6.into_pull_down_input(&mut gpioe.crl),
// Outputs
pb6: gpiob.pb6.into_push_pull_output(&mut gpiob.crl),
pb7: gpiob.pb7.into_push_pull_output(&mut gpiob.crl),
pb11: gpiob.pb11.into_push_pull_output(&mut gpiob.crh),
pb12: gpiob.pb12.into_push_pull_output(&mut gpiob.crh),
pc7: gpioc.pc7.into_push_pull_output(&mut gpioc.crl),
pc8: gpioc.pc8.into_push_pull_output(&mut gpioc.crh),
pd8: gpiod.pd8.into_push_pull_output(&mut gpiod.crh),
pd9: gpiod.pd9.into_push_pull_output(&mut gpiod.crh),
pd10: gpiod.pd10.into_push_pull_output(&mut gpiod.crh),
pe1: gpioe.pe1.into_push_pull_output(&mut gpioe.crl),
pe2: gpioe.pe2.into_push_pull_output(&mut gpioe.crl),
pe3: gpioe.pe3.into_push_pull_output(&mut gpioe.crl),
pe4: gpioe.pe4.into_push_pull_output(&mut gpioe.crl),
pe9: gpioe.pe9.into_push_pull_output(&mut gpioe.crh),
pe13: gpioe.pe13.into_push_pull_output(&mut gpioe.crh),
};
// let mut last = get_report(&mut io_pins, &mut adc1, &cal);
// ====================== PWM setup =================
let c1 = pa15.into_alternate_push_pull(&mut gpioa.crh);
let c3 = gpiob.pb10.into_alternate_push_pull(&mut gpiob.crh);
let (mut integ_lt_pwm, mut rudder_trim_display_pwm) = p
.TIM2
.pwm_hz::<Tim2FullRemap, _, _>((c1, c3), &mut afio.mapr, 1.kHz(), &clocks).split();
integ_lt_pwm.enable();
// let mut rudder_trim_display_pwm = p
// .TIM2
// .pwm_hz::<Tim2FullRemap, _, _>(c3, &mut afio.mapr, 1.kHz(), &clocks);
rudder_trim_display_pwm.enable();
let pwm_max = integ_lt_pwm.get_max_duty(); //48000 in our case
// ====================== Timer setup ===============
// let timer = Instant;
// let mut last_report_sent = timer.elapsed();
// ====================== Main loop =================
loop {
let report = get_report(&mut io_pins, &mut adc1, &cal);
// TODO figure out timer and only send in like 1ms intervals or on change
// if report != last {
match consumer.device().write_report(&report) {
Err(UsbHidError::WouldBlock) => {}
Err(UsbHidError::UsbError(usb_device::UsbError::BufferOverflow)) => {
core::panic!("Failed to write consumer report, report is too big")
}
Ok(_) => {
// last = report;
}
Err(e) => {
// set as indicator that this has happened
// io_pins.pe1.set_high();
// io_pins.pe4.set_high();
core::panic!("Failed to write consumer report: {:?}", e)
}
}
// }
if usb_dev.poll(&mut [&mut consumer]) {
match consumer.device().read_report() {
Err(UsbHidError::WouldBlock) => {}
Ok(output) => {
// Set backlight brightness
let pwm_val: u16;
if output.integ_lt > pwm_max {
pwm_val = pwm_max;
}
else {
pwm_val = output.integ_lt;
}
integ_lt_pwm.set_duty(pwm_val);
// LED outputs
// ECAM
let mut ecam_row = [0; 3];
let mut ecam_col = [0; 6];
// Match row and col
if output.leds & 0x54A != 0 { ecam_row[0] = 1; }
if output.leds & 0x1A94 != 0 { ecam_row[1] = 1; }
if output.leds & 0x21 != 0 { ecam_row[2] = 1; }
if output.leds & 0x6 != 0 { ecam_col[0] = 1; }
if output.leds & 0x18 != 0 { ecam_col[1] = 1; }
if output.leds & 0xE0 != 0 { ecam_col[2] = 1; }
if output.leds & 0x300 != 0 { ecam_col[3] = 1; }
if output.leds & 0xC00 != 0 { ecam_col[4] = 1; }
if output.leds & 0x1001 != 0 { ecam_col[5] = 1; }
// Set ECAM Out
define_ecam_output_states_row!(0, pb12, ecam_row, io_pins); // Row 1
define_ecam_output_states_row!(1, pe13, ecam_row, io_pins); // Row 2
define_ecam_output_states_row!(2, pe9, ecam_row, io_pins); // Row 3
define_ecam_output_states_col!(0, pd9, ecam_col, io_pins); // Col 1
define_ecam_output_states_col!(1, pc7, ecam_col, io_pins); // Col 2
define_ecam_output_states_col!(2, pc8, ecam_col, io_pins); // Col 3
define_ecam_output_states_col!(3, pd10, ecam_col, io_pins); // Col 4
define_ecam_output_states_col!(4, pd8, ecam_col, io_pins); // Col 5
define_ecam_output_states_col!(5, pb11, ecam_col, io_pins); // Col 6
// Other Indicators
define_output_states!(0x2000, pb7, output, io_pins); // DOOR OPEN
define_output_states!(0x4000, pb6, output, io_pins); // DOOR FAULT
define_output_states!(0x8000, pe2, output, io_pins); // ENG 1 FAULT
define_output_states!(0x10000, pe1, output, io_pins); // ENG 1 FIRE
define_output_states!(0x20000, pe3, output, io_pins); // ENG 2 FAULT
define_output_states!(0x40000, pe4, output, io_pins); // ENG 2 FIRE
// Check generic input field
// Calibration bit
if output.generic & 0x1 == 0x1 {
calibration_active = true;
if !calibration_min_done && output.generic & 0x2 == 0x2 {
cal.data[0].min = adc1.read(&mut io_pins.pa2).unwrap();
cal.data[1].min = adc1.read(&mut io_pins.pa3).unwrap();
cal.data[2].min = adc1.read(&mut io_pins.pa5).unwrap();
cal.data[3].min = adc1.read(&mut io_pins.pa6).unwrap();
cal.data[4].min = adc1.read(&mut io_pins.pa7).unwrap();
cal.data[5].min = adc1.read(&mut io_pins.pb0).unwrap();
cal.data[6].min = adc1.read(&mut io_pins.pb1).unwrap();
cal.data[7].min = adc1.read(&mut io_pins.pc0).unwrap();
cal.data[8].min = adc1.read(&mut io_pins.pc1).unwrap();
cal.data[9].min = adc1.read(&mut io_pins.pc2).unwrap();
cal.data[10].min = adc1.read(&mut io_pins.pc3).unwrap();
calibration_min_done = true;
}
}
else {
if calibration_active {
let mut values: [u16; 11] = [0; 11];
values[0] = adc1.read(&mut io_pins.pa2).unwrap();
values[1] = adc1.read(&mut io_pins.pa3).unwrap();
values[2] = adc1.read(&mut io_pins.pa5).unwrap();
values[3] = adc1.read(&mut io_pins.pa6).unwrap();
values[4] = adc1.read(&mut io_pins.pa7).unwrap();
values[5] = adc1.read(&mut io_pins.pb0).unwrap();
values[6] = adc1.read(&mut io_pins.pb1).unwrap();
values[7] = adc1.read(&mut io_pins.pc0).unwrap();
values[8] = adc1.read(&mut io_pins.pc1).unwrap();
values[9] = adc1.read(&mut io_pins.pc2).unwrap();
values[10] = adc1.read(&mut io_pins.pc3).unwrap();
let mut i = 0;
loop {
if values[i] > cal.data[i].min {
cal.data[i].max = values[i];
}
else {
cal.data[i].max = CalibrationData::ADC_MAX;
}
cal.data[i].factor = calculate_factor(cal.data[i].min, cal.data[i].max);
i += 1;
if i == values.len() {
break;
}
}
let save_success = save_calibration(&mut flash_writer, &cal);
if save_success {
integ_lt_pwm.set_duty(pwm_max);
}
}
calibration_active = false;
calibration_min_done = false;
}
}
Err(e) => {
core::panic!("Failed to write consumer report: {:?}", e)
}
}
}
}
}
// Calculate factor from min and max
fn calculate_factor(min: u16, max: u16) -> f32 {
return CalibrationData::ADC_MAX as f32 / (CalibrationData::ADC_MAX - min - (CalibrationData::ADC_MAX - max)) as f32;
}
// Returns a CustomInputReport from the inputs given
fn get_report(pins: &mut MyPins, adc1: &mut adc::Adc<pac::ADC1>, cal: &Calibration) -> CustomInputReport {
// Read axis
let mut values: [u16; 11] = [0; 11];
values[0] = adc1.read(&mut pins.pa2).unwrap();
values[1] = adc1.read(&mut pins.pa3).unwrap();
values[2] = adc1.read(&mut pins.pa5).unwrap();
values[3] = adc1.read(&mut pins.pa6).unwrap();
values[4] = adc1.read(&mut pins.pa7).unwrap();
values[5] = adc1.read(&mut pins.pb0).unwrap();
values[6] = adc1.read(&mut pins.pb1).unwrap();
values[7] = adc1.read(&mut pins.pc0).unwrap();
values[8] = adc1.read(&mut pins.pc1).unwrap();
values[9] = adc1.read(&mut pins.pc2).unwrap();
values[10] = adc1.read(&mut pins.pc3).unwrap();
// Apply calibration to axis data
let mut values_norm: [u16; 11] = [0; 11];
let mut i = 0;
loop {
if values[i] < cal.data[i].min {
values_norm[i] = 0;
}
else if values[i] > cal.data[i].max {
values_norm[i] = CalibrationData::ADC_MAX;
}
else {
values_norm[i] = ((values[i] - cal.data[i].min) as f32 * cal.data[i].factor) as u16;
}
i += 1;
if i == values_norm.len() {
break;
}
}
// Buttons
let mut buttons: u32 = 0;
if pins.pa0.is_high() { buttons += 0x1; }
if pins.pa1.is_high() { buttons += 0x2; }
if pins.pa4.is_high() { buttons += 0x4; }
if pins.pa8.is_high() { buttons += 0x8; }
if pins.pa9.is_high() { buttons += 0x10; }
if pins.pa10.is_high() { buttons += 0x20; }
if pins.pb4.is_high() { buttons += 0x40; }
if pins.pb5.is_high() { buttons += 0x80; }
if pins.pb8.is_high() { buttons += 0x100; }
if pins.pb9.is_high() { buttons += 0x200; }
if pins.pc4.is_high() { buttons += 0x400; }
if pins.pc5.is_high() { buttons += 0x800; }
if pins.pc6.is_high() { buttons += 0x1000; }
if pins.pc9.is_high() { buttons += 0x0200; }
if pins.pc13.is_high() { buttons += 0x4000; }
if pins.pc14.is_high() { buttons += 0x8000; }
if pins.pc15.is_high() { buttons += 0x10000; }
if pins.pd1.is_high() { buttons += 0x20000; }
if pins.pd3.is_high() { buttons += 0x40000; }
if pins.pd4.is_high() { buttons += 0x80000; }
if pins.pd5.is_high() { buttons += 0x100000; }
if pins.pd6.is_high() { buttons += 0x200000; }
if pins.pd7.is_high() { buttons += 0x400000; }
if pins.pd13.is_high() { buttons += 0x800000; }
if pins.pd14.is_high() { buttons += 0x1000000; }
if pins.pd15.is_high() { buttons += 0x2000000; }
if pins.pe0.is_high() { buttons += 0x4000000; }
if pins.pe5.is_high() { buttons += 0x8000000; }
if pins.pe6.is_high() { buttons += 0x10000000; }
// ECAM Keyboard matrix
CustomInputReport {
report_id: 1,
axis: values_norm,
buttons,
}
}
// Save calibration to flash
fn save_calibration(flash: &mut FlashWriter, cal: &Calibration) -> bool {
let mut data: [u8; 1024] = [0; 1024];
let encoded_layout_version = bytes_of(&FLASH_LAYOUT_VERSION);
data[0..2].copy_from_slice(encoded_layout_version);
data[2] = 1; // Calibration available bit
let encoded_calibration_data = bytes_of(cal);
data[3..][..encoded_calibration_data.len()].copy_from_slice(encoded_calibration_data);
// Verify deactivation due to bug, see https://github.com/stm32-rs/stm32f1xx-hal/issues/330
flash.change_verification(false);
flash.erase(64512, 1024).unwrap();
flash.change_verification(true);
match flash.write(64512, &data) {
Ok(_ret) => return true,
Err(_e) => return false,
};
}
// Load calibration to flash
fn load_calibration(flash: &mut FlashWriter) -> Calibration {
let mut cal = Calibration::new();
match flash.read(64512, 1023) {
Ok(data) => {
// Check if data is available and return early if not suitable
if data[2] != 1 {
return cal;
}
// Check if data is in compatible version and return early if not suitable
match try_from_bytes::<u16>(&data[0..2]) {
Ok(flash_version) => {
if flash_version != &FLASH_LAYOUT_VERSION {
return cal
}
},
Err(_e) => {
return cal
},
}
// Load calibration data
let dummy = bytes_of(&cal);
let dummy2 = &data[3..][..dummy.len()];
let dummy3 = bytes_of_mut(&mut cal);
dummy3.copy_from_slice(dummy2);
return cal;
},
Err(_e) => {
return cal
},
};
}