1
0
Fork 0
A320-family/Nasal/FMGC/FMGC-b.nas
2021-04-22 18:03:06 -04:00

1045 lines
34 KiB
Text

# A3XX FMGC Autopilot
# Based off IT-AUTOFLIGHT System Controller V4.0.X
# Copyright (c) 2020 Josh Davidson (Octal450)
# Initialize all used variables and property nodes
# Sim
var Controls = {
aileron: props.globals.getNode("/controls/flight/aileron", 1),
elevator: props.globals.getNode("/controls/flight/elevator", 1),
rudder: props.globals.getNode("/controls/flight/rudder", 1),
};
var FPLN = {
active: props.globals.getNode("/FMGC/flightplan[2]/active", 1),
activeTemp: 0,
currentCourse: 0,
currentWp: props.globals.getNode("/FMGC/flightplan[2]/current-wp", 1),
currentWpTemp: 0,
deltaAngle: 0,
deltaAngleRad: 0,
distCoeff: 0,
maxBank: 0,
maxBankLimit: 0,
nextCourse: 0,
R: 0,
radius: 0,
turnDist: 0,
wp0Dist: props.globals.getNode("/FMGC/flightplan[2]/current-leg-dist", 1),
wpFlyFrom: 0,
wpFlyTo: 0,
};
var Gear = {
wow0: props.globals.getNode("/gear/gear[0]/wow", 1),
wow1: props.globals.getNode("/gear/gear[1]/wow", 1),
wow1Temp: 1,
wow2: props.globals.getNode("/gear/gear[2]/wow", 1),
wow2Temp: 1,
};
var Misc = {
elapsedSec: props.globals.getNode("/sim/time/elapsed-sec", 1),
fbwLaw: props.globals.getNode("/it-fbw/law", 1),
flapNorm: props.globals.getNode("/surface-positions/flap-pos-norm", 1),
pfdHeadingScale: props.globals.getNode("/instrumentation/pfd/heading-scale", 1),
};
var Position = {
gearAglFtTemp: 0,
gearAglFt: props.globals.getNode("/position/gear-agl-ft", 1),
indicatedAltitudeFt: props.globals.getNode("/instrumentation/altimeter/indicated-altitude-ft", 1),
indicatedAltitudeFtTemp: 0,
};
var Radio = {
gsDefl: [props.globals.getNode("/instrumentation/nav[0]/gs-needle-deflection-norm", 1), props.globals.getNode("instrumentation/nav[1]/gs-needle-deflection-norm", 1)],
gsDeflTemp: 0,
inRange: [props.globals.getNode("/instrumentation/nav[0]/in-range", 1), props.globals.getNode("instrumentation/nav[1]/in-range", 1)],
inRangeTemp: 0,
locDefl: [props.globals.getNode("/instrumentation/nav[0]/heading-needle-deflection-norm", 1), props.globals.getNode("instrumentation/nav[1]/heading-needle-deflection-norm", 1)],
locDeflTemp: 0,
radioSel: 0,
signalQuality: [props.globals.getNode("/instrumentation/nav[0]/signal-quality-norm", 1), props.globals.getNode("instrumentation/nav[1]/signal-quality-norm", 1)],
signalQualityTemp: 0,
};
var Velocities = {
airspeedKt: props.globals.getNode("/velocities/airspeed-kt", 1), # Only used for gain scheduling
groundspeedKt: props.globals.getNode("/velocities/groundspeed-kt", 1),
groundspeedMps: 0,
indicatedAirspeedKt: props.globals.getNode("/instrumentation/airspeed-indicator/indicated-speed-kt", 1),
indicatedMach: props.globals.getNode("/instrumentation/airspeed-indicator/indicated-mach", 1),
trueAirspeedKt: props.globals.getNode("/instrumentation/airspeed-indicator/true-speed-kt", 1),
trueAirspeedKtTemp: 0,
};
# IT-AUTOFLIGHT
var Fd = {
pitchBar: props.globals.initNode("/it-autoflight/fd/pitch-bar", 0, "DOUBLE"),
rollBar: props.globals.initNode("/it-autoflight/fd/roll-bar", 0, "DOUBLE"),
};
var Input = {
alt: props.globals.initNode("/it-autoflight/input/alt", 10000, "INT"),
ap1: props.globals.initNode("/it-autoflight/input/ap1", 0, "BOOL"),
ap2: props.globals.initNode("/it-autoflight/input/ap2", 0, "BOOL"),
athr: props.globals.initNode("/it-autoflight/input/athr", 0, "BOOL"),
altDiff: 0,
bankLimitSw: props.globals.initNode("/it-autoflight/input/bank-limit-sw", 0, "INT"),
bankLimitSwTemp: 0,
fd1: props.globals.initNode("/it-autoflight/input/fd1", 1, "BOOL"),
fd2: props.globals.initNode("/it-autoflight/input/fd2", 1, "BOOL"),
fpa: props.globals.initNode("/it-autoflight/input/fpa", 0, "DOUBLE"),
fpaAbs: props.globals.initNode("/it-autoflight/input/fpa-abs", 0, "DOUBLE"), # Set by property rule
hdg: props.globals.initNode("/it-autoflight/input/hdg", 0, "INT"),
hdgCalc: 0,
kts: props.globals.initNode("/it-autoflight/input/kts", 100, "INT"),
ktsMach: props.globals.initNode("/it-autoflight/input/kts-mach", 0, "BOOL"),
lat: props.globals.initNode("/it-autoflight/input/lat", 5, "INT"),
latTemp: 5,
mach: props.globals.initNode("/it-autoflight/input/mach", 0.5, "DOUBLE"),
toga: props.globals.initNode("/it-autoflight/input/toga", 0, "BOOL"),
trk: props.globals.initNode("/it-autoflight/input/trk", 0, "BOOL"),
trueCourse: props.globals.initNode("/it-autoflight/input/true-course", 0, "BOOL"),
vs: props.globals.initNode("/it-autoflight/input/vs", 0, "INT"),
vsAbs: props.globals.initNode("/it-autoflight/input/vs-abs", 0, "INT"), # Set by property rule
vert: props.globals.initNode("/it-autoflight/input/vert", 7, "INT"),
vertTemp: 7,
};
var Internal = {
alt: props.globals.initNode("/it-autoflight/internal/alt", 10000, "INT"),
altCaptureActive: 0,
altDiff: 0,
altTemp: 0,
altPredicted: props.globals.initNode("/it-autoflight/internal/altitude-predicted", 0, "DOUBLE"),
bankLimit: props.globals.initNode("/it-autoflight/internal/bank-limit", 30, "INT"),
bankLimitAuto: 30,
captVs: 0,
driftAngle: props.globals.initNode("/it-autoflight/internal/drift-angle-deg", 0, "DOUBLE"),
driftAngleTemp: 0,
flchActive: 0,
fpa: props.globals.initNode("/it-autoflight/internal/fpa", 0, "DOUBLE"),
hdgErrorDeg: props.globals.initNode("/it-autoflight/internal/heading-error-deg", 0, "DOUBLE"),
hdgPredicted: props.globals.initNode("/it-autoflight/internal/heading-predicted", 0, "DOUBLE"),
lnavAdvanceNm: props.globals.initNode("/it-autoflight/internal/lnav-advance-nm", 0, "DOUBLE"),
minVs: props.globals.initNode("/it-autoflight/internal/min-vs", -500, "INT"),
maxVs: props.globals.initNode("/it-autoflight/internal/max-vs", 500, "INT"),
vs: props.globals.initNode("/it-autoflight/internal/vert-speed-fpm", 0, "DOUBLE"),
vsTemp: 0,
};
var Output = {
ap1: props.globals.initNode("/it-autoflight/output/ap1", 0, "BOOL"),
ap1Temp: 0,
ap2: props.globals.initNode("/it-autoflight/output/ap2", 0, "BOOL"),
ap2Temp: 0,
apprArm: props.globals.initNode("/it-autoflight/output/appr-armed", 0, "BOOL"),
athr: props.globals.initNode("/it-autoflight/output/athr", 0, "BOOL"),
athrTemp: 0,
fd1: props.globals.initNode("/it-autoflight/output/fd1", 1, "BOOL"),
fd1Temp: 0,
fd2: props.globals.initNode("/it-autoflight/output/fd2", 1, "BOOL"),
fd2Temp: 0,
lat: props.globals.initNode("/it-autoflight/output/lat", 5, "INT"),
latTemp: 5,
lnavArm: props.globals.initNode("/it-autoflight/output/lnav-armed", 0, "BOOL"),
locArm: props.globals.initNode("/it-autoflight/output/loc-armed", 0, "BOOL"),
thrMode: props.globals.initNode("/it-autoflight/output/thr-mode", 2, "INT"),
vert: props.globals.initNode("/it-autoflight/output/vert", 7, "INT"),
vertTemp: 7,
};
var Text = {
lat: props.globals.initNode("/it-autoflight/mode/lat", "T/O", "STRING"),
thr: props.globals.initNode("/it-autoflight/mode/thr", "PITCH", "STRING"),
vert: props.globals.initNode("/it-autoflight/mode/vert", "T/O CLB", "STRING"),
vertTemp: "T/O CLB",
};
var Settings = {
reducAglFt: props.globals.initNode("/it-autoflight/settings/accel-agl-ft", 1500, "INT"), # Changable from MCDU, eventually set to 1500 above runway
};
var Sound = {
apOff: props.globals.initNode("/it-autoflight/sound/apoffsound", 0, "BOOL"), # Is this still needed??? -JD
enableApOff: 0,
};
# A3XX Custom
var Custom = {
apFdOn: 0,
hdgTime: props.globals.getNode("/modes/fcu/hdg-time", 1),
ndTrkSel: [props.globals.getNode("/instrumentation/efis[0]/trk-selected", 1), props.globals.getNode("/instrumentation/efis[1]/trk-selected", 1)],
showHdg: props.globals.initNode("/it-autoflight/custom/show-hdg", 1, "BOOL"),
trkFpa: props.globals.initNode("/it-autoflight/custom/trk-fpa", 0, "BOOL"),
Input: {
spdManaged: props.globals.getNode("/it-autoflight/input/spd-managed", 1),
},
Output: {
fmaPower: props.globals.initNode("/it-autoflight/output/fma-pwr", 0, "BOOL"),
},
Sound: {
athrOff: props.globals.initNode("/it-autoflight/sound/athrsound", 0, "BOOL"),
enableAthrOff: 0,
},
ThrLock: props.globals.getNode("/fdm/jsbsim/fadec/thr-locked", 1)
};
var ITAF = {
init: func() {
Custom.ndTrkSel[0].setBoolValue(0);
Custom.ndTrkSel[1].setBoolValue(0);
Custom.trkFpa.setBoolValue(0);
Input.ktsMach.setBoolValue(0);
Input.ap1.setBoolValue(0);
Input.ap2.setBoolValue(0);
Input.athr.setBoolValue(0);
Input.fd1.setBoolValue(1);
Input.fd2.setBoolValue(1);
Input.hdg.setValue(360);
Input.alt.setValue(10000);
Input.vs.setValue(0);
Input.fpa.setValue(0);
Input.lat.setValue(9);
Input.vert.setValue(9);
Input.trk.setBoolValue(0);
Input.trueCourse.setBoolValue(0);
Input.toga.setBoolValue(0);
Custom.Input.spdManaged.setBoolValue(0);
Output.ap1.setBoolValue(0);
Output.ap2.setBoolValue(0);
Output.athr.setBoolValue(0);
Output.fd1.setBoolValue(1);
Output.fd2.setBoolValue(1);
me.updateLnavArm(0);
me.updateLocArm(0);
me.updateApprArm(0);
Output.thrMode.setValue(0);
Output.lat.setValue(9);
Output.vert.setValue(9);
Internal.minVs.setValue(-500);
Internal.maxVs.setValue(500);
Internal.bankLimit.setValue(30);
Internal.bankLimitAuto = 30;
Internal.alt.setValue(10000);
Internal.altCaptureActive = 0;
Input.kts.setValue(100);
Input.mach.setValue(0.5);
Text.thr.setValue("THRUST");
updateFma.arm();
me.updateLatText("");
me.updateVertText("");
Custom.showHdg.setBoolValue(1);
Custom.Output.fmaPower.setBoolValue(1);
ManagedSPD.stop();
loopTimer.start();
slowLoopTimer.start();
},
loop: func() {
Output.latTemp = Output.lat.getValue();
Output.vertTemp = Output.vert.getValue();
# VOR/ILS Revision
if (Output.latTemp == 2 or Output.vertTemp == 2 or Output.vertTemp == 6) {
me.checkRadioRevision(Output.latTemp, Output.vertTemp);
}
Gear.wow1Temp = Gear.wow1.getBoolValue();
Gear.wow2Temp = Gear.wow2.getBoolValue();
Output.ap1Temp = Output.ap1.getBoolValue();
Output.ap2Temp = Output.ap2.getBoolValue();
Output.latTemp = Output.lat.getValue();
Output.vertTemp = Output.vert.getValue();
Text.vertTemp = Text.vert.getValue();
Position.gearAglFtTemp = Position.gearAglFt.getValue();
Internal.vsTemp = Internal.vs.getValue();
Position.indicatedAltitudeFtTemp = Position.indicatedAltitudeFt.getValue();
# LNAV Engagement
if (Output.lnavArm.getBoolValue()) {
me.checkLnav(1);
}
# VOR/LOC or ILS/LOC Capture
if (Output.locArm.getBoolValue()) {
me.checkLoc(1);
}
# G/S Capture
if (Output.apprArm.getBoolValue()) {
me.checkAppr(1);
}
# Autoland Logic
if (Output.latTemp == 2) {
if (Position.gearAglFtTemp <= 50) { # ALIGN
me.setLatMode(4);
}
}
if (Output.vertTemp == 2) {
if (Position.gearAglFtTemp <= 400 and Position.gearAglFtTemp >= 5) {
me.updateVertText("LAND");
if (Position.gearAglFtTemp <= 100) { # switch to internal flare logic at 100 feet -- but on FMA at 50!
me.setVertMode(6);
}
}
} else if (Output.vertTemp == 6) {
if (Position.gearAglFtTemp <= 50 and Position.gearAglFtTemp >= 5 and Text.vert.getValue() != "FLARE") {
me.updateVertText("FLARE");
}
if (Gear.wow1Temp and Gear.wow2Temp and Text.vert.getValue() != "ROLLOUT") {
me.updateLatText("RLOU");
me.updateVertText("ROLLOUT");
}
}
# FLCH Engagement
if (Text.vertTemp == "T/O CLB") {
me.checkFlch(Settings.reducAglFt.getValue());
}
# Altitude Capture/Sync Logic
if (Output.vertTemp != 0) {
Internal.alt.setValue(Input.alt.getValue());
}
Internal.altTemp = Internal.alt.getValue();
Internal.altDiff = Internal.altTemp - Position.indicatedAltitudeFtTemp;
if (Output.vertTemp != 0 and Output.vertTemp != 2 and Output.vertTemp != 6 and Output.vertTemp != 9) {
Internal.captVs = math.clamp(math.round(abs(Internal.vs.getValue()) / 5, 100), 50, 2500); # Capture limits
Custom.apFdOn = Output.ap1Temp or Output.ap2Temp or Output.fd1.getBoolValue() or Output.fd2.getBoolValue();
if (abs(Internal.altDiff) <= Internal.captVs and !Gear.wow1Temp and !Gear.wow2Temp and Custom.apFdOn) {
if (Internal.altTemp >= Position.indicatedAltitudeFtTemp and Internal.vsTemp >= -25) { # Don't capture if we are going the wrong way
me.setVertMode(3);
} else if (Internal.altTemp < Position.indicatedAltitudeFtTemp and Internal.vsTemp <= 25) { # Don't capture if we are going the wrong way
me.setVertMode(3);
}
}
}
# Altitude Hold Min/Max Reset
if (Internal.altCaptureActive) {
if (abs(Internal.altDiff) <= 20 and Text.vert.getValue() != "ALT HLD") {
me.resetClimbRateLim();
me.updateVertText("ALT HLD");
}
}
# Thrust Mode Selector
me.updateThrustMode();
# Custom Stuff Below
# Heading Sync
if (!Custom.showHdg.getBoolValue()) {
Input.hdg.setValue(Misc.pfdHeadingScale.getValue());
}
# Preselect Heading
if (Output.latTemp != 0 and Output.latTemp != 9) { # Modes that always show HDG
if (Custom.hdgTime.getValue() + 45 >= Misc.elapsedSec.getValue()) {
Custom.showHdg.setBoolValue(1);
} else {
Custom.showHdg.setBoolValue(0);
}
}
# Misc
if (Output.ap1Temp == 1 or Output.ap2Temp == 1) { # Trip AP off
if (abs(Controls.aileron.getValue()) >= 0.2 or abs(Controls.elevator.getValue()) >= 0.2 or abs(Controls.rudder.getValue()) >= 0.2) {
fcu.apOff("hard", 0);
}
}
},
slowLoop: func() {
Velocities.trueAirspeedKtTemp = Velocities.trueAirspeedKt.getValue();
FPLN.activeTemp = FPLN.active.getValue();
FPLN.currentWpTemp = FPLN.currentWp.getValue();
# Bank Limit
if (Velocities.trueAirspeedKtTemp >= 420) {
Internal.bankLimitAuto = 15;
} else if (Velocities.trueAirspeedKtTemp >= 340) {
Internal.bankLimitAuto = 20;
} else {
Internal.bankLimitAuto = 30;
}
Internal.bankLimit.setValue(Internal.bankLimitAuto);
# If in LNAV mode and route is not longer active, switch to HDG HLD
if (Output.lat.getValue() == 1) { # Only evaulate the rest of the condition if we are in LNAV mode
if (flightPlanController.num[2].getValue() == 0 or !FPLN.active.getBoolValue()) {
me.setLatMode(3);
}
}
# Waypoint Advance Logic
if (flightPlanController.num[2].getValue() > 0 and FPLN.activeTemp == 1) {
if ((FPLN.currentWpTemp + 1) < flightPlanController.num[2].getValue()) {
Velocities.groundspeedMps = Velocities.groundspeedKt.getValue() * 0.5144444444444;
FPLN.wpFlyFrom = FPLN.currentWpTemp;
if (FPLN.wpFlyFrom < 0) {
FPLN.wpFlyFrom = 0;
}
FPLN.currentCourse = fmgc.wpCourse[2][FPLN.wpFlyFrom].getValue();
FPLN.wpFlyTo = FPLN.currentWpTemp + 1;
FPLN.nextCourse = fmgc.wpCourse[2][FPLN.wpFlyTo].getValue();
FPLN.maxBankLimit = Internal.bankLimit.getValue();
FPLN.deltaAngle = math.abs(geo.normdeg180(FPLN.currentCourse - FPLN.nextCourse));
FPLN.maxBank = FPLN.deltaAngle * 1.5;
if (FPLN.maxBank > FPLN.maxBankLimit) {
FPLN.maxBank = FPLN.maxBankLimit;
}
FPLN.radius = (Velocities.groundspeedMps * Velocities.groundspeedMps) / (9.81 * math.tan(FPLN.maxBank / 57.2957795131));
FPLN.deltaAngleRad = (180 - FPLN.deltaAngle) / 114.5915590262;
FPLN.R = FPLN.radius / math.sin(FPLN.deltaAngleRad);
FPLN.distCoeff = FPLN.deltaAngle * -0.011111 + 2;
if (FPLN.distCoeff < 1) {
FPLN.distCoeff = 1;
}
FPLN.turnDist = math.cos(FPLN.deltaAngleRad) * FPLN.R * FPLN.distCoeff / 1852;
if (Gear.wow0.getBoolValue() and FPLN.turnDist < 1) {
FPLN.turnDist = 1;
}
Internal.lnavAdvanceNm.setValue(FPLN.turnDist);
# Advance logic done by flightplan controller
if (FPLN.wp0Dist.getValue() <= FPLN.turnDist and !Gear.wow1.getBoolValue()) {
flightPlanController.autoSequencing();
}
#if (FPLN.wp0Dist.getValue() <= FPLN.turnDist and !Gear.wow1.getBoolValue() and fmgc.flightPlanController.flightplans[2].getWP(FPLN.currentWpTemp).fly_type == "flyBy") {
# flightPlanController.autoSequencing();
#} elsif (FPLN.wp0Dist.getValue() <= 0.1) {
# flightPlanController.autoSequencing();
#}
}
}
},
ap1Master: func(s) {
if (s == 1) {
if (Output.vert.getValue() != 6 and !Gear.wow1.getBoolValue() and !Gear.wow2.getBoolValue() and systems.ELEC.Bus.acEss.getValue() >= 110 and fbw.FBW.apOff == 0 and Position.gearAglFt.getValue() >= 100) {
me.revertBasicMode();
Output.ap1.setBoolValue(1);
Output.latTemp = Output.lat.getValue();
if (Output.ap2.getBoolValue() and !Output.apprArm.getBoolValue() and Output.latTemp != 2 and Output.latTemp != 4) {
me.ap2Master(0);
}
Sound.enableApOff = 1;
Sound.apOff.setBoolValue(0);
}
} else {
Output.ap1.setBoolValue(0);
me.apOffFunction();
}
Output.ap1Temp = Output.ap1.getBoolValue();
if (Input.ap1.getBoolValue() != Output.ap1Temp) {
Input.ap1.setBoolValue(Output.ap1Temp);
}
},
ap2Master: func(s) {
if (s == 1) {
if (Output.vert.getValue() != 6 and !Gear.wow1.getBoolValue() and !Gear.wow2.getBoolValue() and systems.ELEC.Bus.acEss.getValue() >= 110 and fbw.FBW.apOff == 0 and Position.gearAglFt.getValue() >= 100) {
me.revertBasicMode();
Output.ap2.setBoolValue(1);
Output.latTemp = Output.lat.getValue();
if (Output.ap1.getBoolValue() and !Output.apprArm.getBoolValue() and Output.latTemp != 2 and Output.latTemp != 4) {
me.ap1Master(0);
}
Sound.enableApOff = 1;
Sound.apOff.setBoolValue(0);
}
} else {
Output.ap2.setBoolValue(0);
me.apOffFunction();
}
Output.ap2Temp = Output.ap2.getBoolValue();
if (Input.ap2.getBoolValue() != Output.ap2Temp) {
Input.ap2.setBoolValue(Output.ap2Temp);
}
},
apOffFunction: func() {
if (!Output.ap1.getBoolValue() and !Output.ap2.getBoolValue()) { # Only do if both APs are off
me.updateFma();
if (Sound.enableApOff) {
Sound.apOff.setBoolValue(1);
Sound.enableApOff = 0;
}
}
},
athrMaster: func(s) {
if (s == 1) {
if (systems.ELEC.Bus.acEss.getValue() >= 110 and !pts.FMGC.CasCompare.casRejectAll.getBoolValue() and fbw.FBW.apOff == 0) {
Output.athr.setBoolValue(1);
Custom.ThrLock.setValue(0);
Custom.Sound.enableAthrOff = 1;
Custom.Sound.athrOff.setBoolValue(0);
}
} else {
Output.athr.setBoolValue(0);
if (Custom.Sound.enableAthrOff) {
Custom.Sound.athrOff.setBoolValue(1);
Custom.Sound.enableAthrOff = 0;
}
}
Output.athrTemp = Output.athr.getBoolValue();
if (Input.athr.getBoolValue() != Output.athrTemp) {
Input.athr.setBoolValue(Output.athrTemp);
}
},
fd1Master: func(s) {
if (s == 1) {
Output.fd1.setBoolValue(1);
me.updateFma();
} else {
Output.fd1.setBoolValue(0);
if (!Output.fd2.getBoolValue()) {
me.updateFma();
}
}
Output.fd1Temp = Output.fd1.getBoolValue();
if (Input.fd1.getBoolValue() != Output.fd1Temp) {
Input.fd1.setBoolValue(Output.fd1Temp);
}
},
fd2Master: func(s) {
if (s == 1) {
Output.fd2.setBoolValue(1);
me.updateFma();
} else {
Output.fd2.setBoolValue(0);
if (!Output.fd1.getBoolValue()) {
me.updateFma();
}
}
Output.fd2Temp = Output.fd2.getBoolValue();
if (Input.fd2.getBoolValue() != Output.fd2Temp) {
Input.fd2.setBoolValue(Output.fd2Temp);
}
},
setLatMode: func(n) {
Output.vertTemp = Output.vert.getValue();
if (n == 0) { # HDG SEL
me.updateLnavArm(0);
me.updateLocArm(0);
me.updateApprArm(0);
Output.lat.setValue(0);
Custom.showHdg.setBoolValue(1);
me.updateLatText("HDG");
if (Output.vertTemp == 2 or Output.vertTemp == 6) { # Also cancel G/S or FLARE if active
me.setVertMode(1);
}
} else if (n == 1) { # LNAV
me.updateLocArm(0);
me.updateApprArm(0);
me.checkLnav(0);
} else if (n == 2) { # VOR/LOC
me.updateLnavArm(0);
me.checkLoc(0);
} else if (n == 3) { # HDG HLD
me.updateLnavArm(0);
me.updateLocArm(0);
me.updateApprArm(0);
me.syncHdg();
Output.lat.setValue(0);
Custom.showHdg.setBoolValue(1);
me.updateLatText("HDG");
if (Output.vertTemp == 2 or Output.vertTemp == 6) { # Also cancel G/S or FLARE if active
me.setVertMode(1);
}
} else if (n == 4) { # ALIGN
me.updateLnavArm(0);
me.updateLocArm(0);
me.updateApprArm(0);
Output.lat.setValue(4);
Custom.showHdg.setBoolValue(0);
me.updateLatText("ALGN");
} else if (n == 5) { # RWY
me.updateLnavArm(0);
me.updateLocArm(0);
me.updateApprArm(0);
Output.lat.setValue(5);
Custom.showHdg.setBoolValue(0);
me.updateLatText("T/O");
} else if (n == 9) { # NONE
me.updateLocArm(0);
Output.lat.setValue(9);
Custom.showHdg.setBoolValue(1);
me.updateLatText("");
}
},
setLatArm: func(n) {
if (n == 0) {
me.updateLnavArm(0);
Custom.showHdg.setBoolValue(1);
} else if (n == 1) {
if (flightPlanController.num[2].getValue() > 0 and FPLN.active.getBoolValue()) {
me.updateLnavArm(1);
Custom.showHdg.setBoolValue(0);
}
} else if (n == 3) {
me.syncHdg();
me.updateLnavArm(0);
Custom.showHdg.setBoolValue(1);
}
},
setVertMode: func(n) {
Input.altDiff = Input.alt.getValue() - Position.indicatedAltitudeFt.getValue();
if (n == 0) { # ALT HLD
Internal.flchActive = 0;
Internal.altCaptureActive = 0;
me.updateApprArm(0);
Output.vert.setValue(0);
me.resetClimbRateLim();
me.updateVertText("ALT HLD");
me.syncAlt();
me.updateThrustMode();
} else if (n == 1) { # V/S
if (abs(Input.altDiff) >= 25) {
Internal.flchActive = 0;
Internal.altCaptureActive = 0;
me.updateApprArm(0);
Output.vert.setValue(1);
me.updateVertText("V/S");
me.syncVs();
me.updateThrustMode();
} else {
me.updateApprArm(0);
}
} else if (n == 2) { # G/S
me.updateLnavArm(0);
me.checkLoc(0);
me.checkAppr(0);
} else if (n == 3) { # ALT CAP
Internal.flchActive = 0;
Output.vert.setValue(0);
me.setClimbRateLim();
Internal.altCaptureActive = 1;
me.updateVertText("ALT CAP");
me.updateThrustMode();
} else if (n == 4) { # FLCH
me.updateApprArm(0);
Output.vert.setValue(1);
Internal.alt.setValue(Input.alt.getValue());
Internal.altDiff = Internal.alt.getValue() - Position.indicatedAltitudeFt.getValue();
if (abs(Internal.altDiff) >= 250) { # SPD CLB or SPD DES
Internal.altCaptureActive = 0;
Output.vert.setValue(4);
Internal.flchActive = 1;
Internal.alt.setValue(Input.alt.getValue());
me.updateThrustMode();
} else { # ALT CAP
Internal.flchActive = 0;
Internal.alt.setValue(Input.alt.getValue());
Internal.altCaptureActive = 1;
Output.vert.setValue(0);
me.updateVertText("ALT CAP");
me.updateThrustMode();
}
} else if (n == 5) { # FPA
if (abs(Input.altDiff) >= 25) {
Internal.flchActive = 0;
Internal.altCaptureActive = 0;
me.updateApprArm(0);
Output.vert.setValue(5);
me.updateVertText("FPA");
me.syncFpa();
me.updateThrustMode();
} else {
me.updateApprArm(0);
}
} else if (n == 6) { # FLARE/ROLLOUT
Internal.flchActive = 0;
Internal.altCaptureActive = 0;
me.updateApprArm(0);
Output.vert.setValue(6);
me.updateThrustMode();
} else if (n == 7) { # T/O CLB or G/A CLB, text is set by TOGA selector
Internal.flchActive = 0;
Internal.altCaptureActive = 0;
me.updateApprArm(0);
Output.vert.setValue(7);
me.updateThrustMode();
} else if (n == 9) { # NONE
Internal.flchActive = 0;
Internal.altCaptureActive = 0;
me.updateApprArm(0);
Output.vert.setValue(9);
me.updateVertText("");
me.updateThrustMode();
}
},
updateThrustMode: func() {
Output.vertTemp = Output.vert.getValue();
if (Output.athr.getBoolValue() and Output.vertTemp != 7 and (Output.ap1.getBoolValue() or Output.ap2.getBoolValue()) and Position.gearAglFt.getValue() <= 30 and (Output.vertTemp == 2 or Output.vertTemp == 6)) {
# Manual says 40 feet - but video reference shows 30!
Output.thrMode.setValue(1);
Text.thr.setValue("RETARD");
} else if (Output.vertTemp == 4) {
if (Internal.alt.getValue() >= Position.indicatedAltitudeFt.getValue()) {
Output.thrMode.setValue(2);
Text.thr.setValue("PITCH");
if (Internal.flchActive and Text.vert.getValue() != "SPD CLB") {
me.updateVertText("SPD CLB");
}
} else {
Output.thrMode.setValue(1);
Text.thr.setValue("PITCH");
if (Internal.flchActive and Text.vert.getValue() != "SPD DES") {
me.updateVertText("SPD DES");
}
}
} else if (Output.vertTemp == 7) {
Output.thrMode.setValue(2);
Text.thr.setValue("PITCH");
} else {
Output.thrMode.setValue(0);
Text.thr.setValue("THRUST");
}
},
activateLnav: func() {
if (Output.lat.getValue() != 1) {
me.updateLnavArm(0);
me.updateLocArm(0);
me.updateApprArm(0);
Output.lat.setValue(1);
Custom.showHdg.setBoolValue(0);
me.updateLatText("LNAV");
if (Output.vertTemp == 2 or Output.vertTemp == 6) { # Also cancel G/S or FLARE if active
me.setVertMode(1);
}
}
},
activateLoc: func() {
if (Output.lat.getValue() != 2) {
me.updateLnavArm(0);
me.updateLocArm(0);
Output.lat.setValue(2);
Custom.showHdg.setBoolValue(0);
me.updateLatText("LOC");
}
},
activateGs: func() {
if (Output.vert.getValue() != 2) {
Internal.flchActive = 0;
Internal.altCaptureActive = 0;
me.updateApprArm(0);
Output.vert.setValue(2);
me.updateVertText("G/S");
me.updateThrustMode();
}
},
checkLnav: func(t) {
FPLN.activeTemp = FPLN.active.getBoolValue();
if (flightPlanController.num[2].getValue() > 0 and FPLN.activeTemp and Position.gearAglFt.getValue() >= 30) {
me.activateLnav();
} else if (FPLN.activeTemp and Output.lat.getValue() != 1 and t != 1) {
me.updateLnavArm(1);
}
},
checkFlch: func(a) {
if (Position.indicatedAltitudeFt.getValue() >= a and a != 0 and !Gear.wow1.getBoolValue() and !Gear.wow2.getBoolValue()) {
me.setVertMode(4);
}
},
checkLoc: func(t) {
if (Radio.inRange[Radio.radioSel].getBoolValue()) { # # Only evaulate the rest of the condition unless we are in range
Radio.locDeflTemp = Radio.locDefl[Radio.radioSel].getValue();
Radio.signalQualityTemp = Radio.signalQuality[Radio.radioSel].getValue();
if (abs(Radio.locDeflTemp) <= 0.95 and Radio.locDeflTemp != 0 and Radio.signalQualityTemp >= 0.99) {
me.activateLoc();
} else if (t != 1) { # Do not do this if loop calls it
if (Output.lat.getValue() != 2) {
me.updateLnavArm(0);
me.updateLocArm(1);
}
}
} else {
Radio.signalQuality[Radio.radioSel].setValue(0); # Prevent bad behavior due to FG not updating it when not in range
me.updateLocArm(0);
}
},
checkAppr: func(t) {
if (Radio.inRange[Radio.radioSel].getBoolValue()) { # # Only evaulate the rest of the condition unless we are in range
Radio.gsDeflTemp = Radio.gsDefl[Radio.radioSel].getValue();
if (abs(Radio.gsDeflTemp) <= 0.2 and Radio.gsDeflTemp != 0 and Output.lat.getValue() == 2) { # Only capture if LOC is active
me.activateGs();
} else if (t != 1) { # Do not do this if loop calls it
if (Output.vert.getValue() != 2) {
me.updateApprArm(1);
}
}
} else {
Radio.signalQuality[Radio.radioSel].setValue(0); # Prevent bad behavior due to FG not updating it when not in range
me.updateApprArm(0);
}
},
checkRadioRevision: func(l, v) { # Revert mode if signal lost
Radio.inRangeTemp = Radio.inRange[Radio.radioSel].getBoolValue();
if (!Radio.inRangeTemp) {
if (l == 4 or v == 6) {
me.ap1Master(0);
me.ap2Master(0);
me.setLatMode(3);
me.setVertMode(1);
} else {
me.setLatMode(3); # Also cancels G/S if active
}
}
},
setClimbRateLim: func() {
Internal.vsTemp = Internal.vs.getValue();
if (Internal.alt.getValue() >= Position.indicatedAltitudeFt.getValue()) {
Internal.maxVs.setValue(math.round(Internal.vsTemp));
Internal.minVs.setValue(-500);
} else {
Internal.maxVs.setValue(500);
Internal.minVs.setValue(math.round(Internal.vsTemp));
}
},
resetClimbRateLim: func() {
Internal.minVs.setValue(-500);
Internal.maxVs.setValue(500);
},
takeoffGoAround: func() {
Output.vertTemp = Output.vert.getValue();
if ((Output.vertTemp == 2 or Output.vertTemp == 6) and Velocities.indicatedAirspeedKt.getValue() >= 80) {
me.setLatMode(3);
me.setVertMode(7); # Must be before kicking AP off
me.updateVertText("G/A CLB");
me.syncKtsGa();
if (Gear.wow1.getBoolValue() or Gear.wow2.getBoolValue()) {
me.ap1Master(0);
me.ap2Master(0);
}
} else if (Gear.wow1Temp or Gear.wow2Temp) {
me.athrMaster(1);
if (Output.lat.getValue() != 5) { # Don't accidently disarm LNAV
me.setLatMode(5);
}
me.setVertMode(7);
me.updateVertText("T/O CLB");
}
},
syncKts: func() {
Input.kts.setValue(math.clamp(math.round(Velocities.indicatedAirspeedKt.getValue()), 100, 350));
},
syncKtsGa: func() { # Same as syncKts, except doesn't go below V2
Input.kts.setValue(math.clamp(math.round(Velocities.indicatedAirspeedKt.getValue()), FMGCInternal.v2, 350));
},
syncMach: func() {
Input.mach.setValue(math.clamp(math.round(Velocities.indicatedMach.getValue(), 0.001), 0.5, 0.82));
},
syncHdg: func() {
Input.hdg.setValue(math.round(Internal.hdgPredicted.getValue())); # Switches to track automatically
},
syncAlt: func() {
Input.alt.setValue(math.clamp(math.round(Internal.altPredicted.getValue(), 100), 0, 50000));
Internal.alt.setValue(math.clamp(math.round(Internal.altPredicted.getValue(), 100), 0, 50000));
},
syncVs: func() {
Input.vs.setValue(math.clamp(math.round(Internal.vs.getValue(), 100), -6000, 6000));
},
syncFpa: func() {
Input.fpa.setValue(math.clamp(math.round(Internal.fpa.getValue(), 0.1), -9.9, 9.9));
},
# Custom Stuff Below
updateFma: func() {
if (!Output.ap1.getBoolValue() and !Output.ap2.getBoolValue() and !Output.fd1.getBoolValue() and !Output.fd2.getBoolValue()) {
me.setLatMode(9);
me.setVertMode(9);
me.setLatArm(0);
Custom.Output.fmaPower.setBoolValue(0);
} else {
Custom.Output.fmaPower.setBoolValue(1);
me.revertBasicMode();
}
},
revertBasicMode: func() {
if (!Gear.wow1.getBoolValue() and !Gear.wow2.getBoolValue()) { # Don't do this on ground
if (Output.lat.getValue() == 9) {
me.setLatMode(3);
}
if (Output.vert.getValue() == 9) {
if (Custom.trkFpa.getBoolValue()) {
me.setVertMode(5);
} else {
me.setVertMode(1);
}
}
}
},
disarmLoc: func() {
me.updateLocArm(0);
ITAF.armTextCheck();
},
disarmAppr: func() {
me.updateApprArm(0);
ITAF.armTextCheck();
},
toggleTrkFpa: func() {
if (Custom.trkFpa.getBoolValue()) {
me.trkFpaOff();
} else {
me.trkFpaOn();
}
},
trkFpaOn: func() {
Custom.trkFpa.setBoolValue(1);
if (Output.vert.getValue() == 1) {
Input.vert.setValue(5); # This way we only do this if all conditions are true
}
Input.trk.setBoolValue(1);
Custom.ndTrkSel[0].setBoolValue(1);
Custom.ndTrkSel[1].setBoolValue(1);
Input.hdgCalc = Input.hdg.getValue() + math.round(Internal.driftAngle.getValue());
if (Input.hdgCalc > 360) { # It's rounded, so this is ok. Otherwise do >= 360.5
Input.hdgCalc = Input.hdgCalc - 360;
} else if (Input.hdgCalc < 1) { # It's rounded, so this is ok. Otherwise do < 0.5
Input.hdgCalc = Input.hdgCalc + 360;
}
Input.hdg.setValue(Input.hdgCalc);
},
trkFpaOff: func() {
Custom.trkFpa.setBoolValue(0);
if (Output.vert.getValue() == 5) {
Input.vert.setValue(1); # This way we only do this if all conditions are true
}
Input.trk.setBoolValue(0);
Custom.ndTrkSel[0].setBoolValue(0);
Custom.ndTrkSel[1].setBoolValue(0);
Input.hdgCalc = Input.hdg.getValue() - math.round(Internal.driftAngle.getValue());
if (Input.hdgCalc > 360) { # It's rounded, so this is ok. Otherwise do >= 360.5
Input.hdgCalc = Input.hdgCalc - 360;
} else if (Input.hdgCalc < 1) { # It's rounded, so this is ok. Otherwise do < 0.5
Input.hdgCalc = Input.hdgCalc + 360;
}
Input.hdg.setValue(Input.hdgCalc);
},
updateLatText: func(t) {
Text.lat.setValue(t);
updateFma.lat();
},
updateVertText: func(t) {
Text.vert.setValue(t);
updateFma.vert();
},
updateLnavArm: func(n) {
Output.lnavArm.setBoolValue(n);
updateFma.arm();
},
updateLocArm: func(n) {
Output.locArm.setBoolValue(n);
updateFma.arm();
},
updateApprArm: func(n) {
Output.apprArm.setBoolValue(n);
updateFma.arm();
},
};
setlistener("/it-autoflight/input/ap1", func() {
Input.ap1Temp = Input.ap1.getBoolValue();
if (Input.ap1Temp != Output.ap1.getBoolValue()) {
ITAF.ap1Master(Input.ap1Temp);
}
});
setlistener("/it-autoflight/input/ap2", func() {
Input.ap2Temp = Input.ap2.getBoolValue();
if (Input.ap2Temp != Output.ap2.getBoolValue()) {
ITAF.ap2Master(Input.ap2Temp);
}
});
setlistener("/it-autoflight/input/athr", func() {
Input.athrTemp = Input.athr.getBoolValue();
if (Input.athrTemp != Output.athr.getBoolValue()) {
ITAF.athrMaster(Input.athrTemp);
}
});
setlistener("/it-autoflight/input/fd1", func() {
Input.fd1Temp = Input.fd1.getBoolValue();
if (Input.fd1Temp != Output.fd1.getBoolValue()) {
ITAF.fd1Master(Input.fd1Temp);
}
});
setlistener("/it-autoflight/input/fd2", func() {
Input.fd2Temp = Input.fd2.getBoolValue();
if (Input.fd2Temp != Output.fd2.getBoolValue()) {
ITAF.fd2Master(Input.fd2Temp);
}
});
setlistener("/it-autoflight/input/kts-mach", func() {
if (Output.vert.getValue() == 7) { # Mach is not allowed in Mode 7, and don't sync
if (Input.ktsMach.getBoolValue()) {
Input.ktsMach.setBoolValue(0);
}
} else {
if (Input.ktsMach.getBoolValue()) {
ITAF.syncMach();
} else {
ITAF.syncKts();
}
}
}, 0, 0);
setlistener("/it-autoflight/input/toga", func() {
if (Input.toga.getBoolValue()) {
ITAF.takeoffGoAround();
Input.toga.setBoolValue(0);
}
});
setlistener("/it-autoflight/input/lat", func() {
Input.latTemp = Input.lat.getValue();
Output.ap1Temp = Output.ap1.getBoolValue();
Output.ap2Temp = Output.ap2.getBoolValue();
Output.fd1Temp = Output.fd1.getBoolValue();
Output.fd2Temp = Output.fd2.getBoolValue();
if (!Gear.wow1.getBoolValue() and !Gear.wow2.getBoolValue()) {
if (Output.ap1Temp or Output.ap2Temp or Output.fd1Temp or Output.fd2Temp) {
ITAF.setLatMode(Input.latTemp);
} else {
ITAF.setLatMode(9);
}
} else {
if (Output.ap1Temp or Output.ap2Temp or Output.fd1Temp or Output.fd2Temp) {
ITAF.setLatArm(Input.latTemp);
} else {
ITAF.setLatArm(0);
}
}
});
setlistener("/it-autoflight/input/vert", func() {
if (!Gear.wow1.getBoolValue() and !Gear.wow2.getBoolValue() and (Output.ap1.getBoolValue() or Output.ap2.getBoolValue() or Output.fd1.getBoolValue() or Output.fd2.getBoolValue())) {
ITAF.setVertMode(Input.vert.getValue());
} else {
ITAF.setVertMode(9);
}
});
setlistener("/sim/signals/fdm-initialized", func() {
ITAF.init();
});
# For Canvas Nav Display.
setlistener("/it-autoflight/input/hdg", func() {
setprop("/autopilot/settings/heading-bug-deg", Input.hdg.getValue());
}, 0, 0);
setlistener("/it-autoflight/internal/alt", func() {
setprop("/autopilot/settings/target-altitude-ft", Internal.alt.getValue());
}, 0, 0);
var loopTimer = maketimer(0.1, ITAF, ITAF.loop);
var slowLoopTimer = maketimer(1, ITAF, ITAF.slowLoop);