1
0
Fork 0
A320-family/Models/Instruments/ND/canvas/map/TERRAIN.symbol
2021-02-13 11:21:29 +01:00

210 lines
5.2 KiB
Text

# See: http://wiki.flightgear.org/MapStructure
# Class things:
var name = 'TERRAIN';
var parents = [DotSym];
var __self__ = caller(0)[0];
DotSym.makeinstance( name, __self__ );
var element_type = "group";
var tile_list = ["*black*","tile_01.png","tile_02.png","tile_03.png","tile_04.png","tile_06.png","tile_09.png"];
var radar_beacon = 0;
var radar_cycle = 0;
var rader_cleared = 0;
var get_elevation = func (lat, lon) {
var info = geodinfo(lat, lon);
var elevation = 0;
if (info != nil) { elevation = int(info[0] * 3.2808399); }
else { elevation = nil; }
return elevation;
}
var updateTerrain = func(r_scaled){
if(me.fetching) return;
me.fetching = 1;
me.rader_cleared = 0;
var RAD2DEG = 57.2957795;
var DEG2RAD = 0.016774532925;
var pos = geo.aircraft_position();
var pos_lat = pos.lat();
var pos_lon = pos.lon();
var heading = getprop("orientation/heading-magnetic-deg");
var altitudeagl = getprop("/position/altitude-agl-ft");
var side = (math.mod(me.radar_beacon,2)==0) ? "L" : "R";
var a = int(me.radar_beacon/2);
var col = a;
if (side == "R") {
col = -1 + (-1 * a);
}
#var col = me.radar_beacon - me.tileradius;
#for (var a=0; a < me.tileradius; a+=1) {
#var trnL = me.terrlayer["L" ~ a];
#var trnR = me.terrlayer["R" ~ a];
var trn = me.terrlayer[side ~ a];
var len = size(trn);
var range = me.range;
var tiles = me.tile_list;
var proj_lon = pos_lon + ((col * (range/30) * math.sin(DEG2RAD * (heading - 90))) / 60);
var proj_lat = pos_lat + ((col * (range/30) * math.cos(DEG2RAD * (heading - 90))) / 60);
var elevft = [];
for (var row = 0; row <= len; row += 1) {
var point_lon = proj_lon + ((row * (range/30) / 60) * math.sin(DEG2RAD * heading));
var point_lat = proj_lat + ((row * (range/30) / 60) * math.cos(DEG2RAD * heading));
var elev = me.get_elevation(point_lat, point_lon);
var grad = 0; #black
if (elev != nil) {
var diff = elev - altitudeagl;
if (diff>=0) {
grad = int(diff/1000) + 3;
if (grad>5) grad = 5;
} else {
if (diff<500) grad = 3; # lite yellowe
else {
grad = 2 + int(diff/1000);
if (grad<0) grad = 0;
}
}
append(elevft,grad); # 0-5
} else {
append(elevft,6); # magenta
}
}
for (var r=0; r < len; r+=1) {
var imgx = elevft[r];
if (imgx < 1) trn[r].hide();
else trn[r].setFile(me.imgpath ~ me.tile_list[imgx]).show();
#trnR[r].setFile(me.imgpath ~ me.tile_list[2-imgx]).show();
}
#}
me.radar_beacon += 1;
if (me.radar_beacon >= (me.tileradius*2)) {
me.radar_beacon = 0;
me.radar_cycle += 1;
}
#me.last_request = getprop("sim/time/elapsed-sec");
me.fetching = 0;
};
var init = func {
#print('TERRAIN init');
me.tile = 33; # better 34
me.fetching = 0;
me.timeStamp = nil;
me.fetchRad = me.model.fetchRad; # Radius of radar layer to fetch
me.range = me.model.rangeNm; # Range of Navigation Display
me.viewport_radius = me.getOption('viewport_radius', 670);
me.imgpath = get_local_path('res/terrain/');
me.rader_cleared = 1;
var tile = me.tile;
var gx = int(me.viewport_radius / tile);
me.tileradius = gx;
me.terrlayer = {}; #me.element.createChild("image").set("z-index", -100).hide();
var centx = 0; #me.viewport_radius * -0.5;
var centy = -me.viewport_radius;
for (var c=0; c<gx; c+=1) {
var hh = c * tile;
var mx = (c == 0) ? gx : int(math.sqrt(gx*gx-c*c) + 0.5);
var py = centy + (gx-1) * tile;
var pxr = centx+(c*tile);
var pxl = centx-(c*tile)-tile;
var grplx = [];
var grprx = [];
for (var r=0; r<mx; r+=1) {
append(grplx , me.element.createChild("image").set("z-index", -100).setSize(tile,tile).setTranslation(pxl,py).hide());
append(grprx , me.element.createChild("image").set("z-index", -100).setSize(tile,tile).setTranslation(pxr,py).hide());
py-=tile;
}
me.terrlayer["L" ~ c] = grplx;
me.terrlayer["R" ~ c] = grprx;
}
me.update_interval = 300;
me.last_request = 0;
#var r_scaled = (me.fetchRad*me.viewport_radius)/me.range;
#me.fetchWXRMap(r_scaled);
#me.timeStamp = nil;
#http.load("https://api.rainviewer.com/public/maps.json").done(func(r) me.timeStamp = processRequest(r));
};
var clear = func {
if (me.rader_cleared == 0) {
for (var c=0; c<me.tileradius; c+=1 ) {
var rowL = me.terrlayer["L" ~ c];
var rowR = me.terrlayer["R" ~ c];
var len = size(rowL);
for (var r=0; r<len; r+=1) {
rowL[r].hide();
rowR[r].hide();
}
}
me.rader_cleared = 1;
}
}
var draw = func {
var range = me.layer.map.getRange(); # Range of Navigation Display
var update_size = (range != me.range);
me.range = range;
me.fetchRad = me.model.fetchRad; # Radius of radar layer to fetch
var r_scaled = (me.fetchRad*me.viewport_radius)/me.range;
#var hdg = me.layer.map.getHdg();
#var rot = 0 - hdg;
#if(rot < 0) rot = 360 + rot + -getprop("/environment/magnetic-variation-deg");
#me.element.setRotation(rot*D2R);
if(update_size){
me.clear();
#me.terrlayer.hide();
#me.terrlayer.setSize(2*r_scaled, 2*r_scaled)
# .setTranslation(-r_scaled, -r_scaled);
#me.terrlayer.show();
}
var rot = getprop("orientation/heading-deg");
rot -= me.layer.map.getHdg();
me.element.setRotation(rot*D2R);
#if(getprop("sim/time/elapsed-sec") - me.last_request >= me.update_interval) {
me.updateTerrain(r_scaled);
#}
};