# SPDX-License-Identifier: GPL-2.0-or-later # # NOTE! This copyright does *not* cover user models that use these Nasal # services by normal function calls - this is merely considered normal use # of the code, and does *not* fall under the heading of "derived work." # # Copyright (C) 2012-202 by James Turner # route_manager.nas - FlightPlan delegate(s) corresponding to the built- # in route-manager dialog and GPS. Intended to provide a sensible default behaviour, # but can be disabled by an aircraft-specific FMS / GPS system. # This delegate corresponds to functionality of the built-in route-manager dialog. # if you disable it, the built-in route-manager dialog may not work as expected. # Especially, this dialog is responsible for building departure, approach and # arrival waypoints corresponding to the requested SID/STAR/approach, # and replacing them when the inputs change (eg, user seelcted a different # destination or STAR while enroute) # # You can disable the default GPS behaviour *without* touching this delegate : they are # kept seperate since this first one is less likely to need changes var GPSPath = "/instrumentation/gps"; # this delegate corresponds to the default behaviour of the built-in GPS. # depending on the real GPS/FMS you are modelling, you probably need to # replace this with your own. # # To do that, just set /autopilot/route-manager/disable-fms to true, which # will block creation of this delegate. # # Of course you are then responsible for many basic FMS functions, such as # route sequencing and activation # var A320GPSDeleagte = { new: func(fp) { var m = { parents: [A320GPSDeleagte], flightplan:fp, landingCheck:nil }; logprint(LOG_INFO, 'creating A320 GPS FPDelegate'); # tell the GPS C++ code we will do sequencing ourselves, so it can disable # its legacy logic for this setprop(GPSPath ~ '/config/delegate-sequencing', 1); # enable 2020.2 C++ turn anticipation setprop(GPSPath ~ '/config/enable-fly-by', 0); # flyOver maximum distance setprop(GPSPath ~ '/config/over-flight-arm-distance', 5); fp.followLegTrackToFix = 1; fp.aircraftCategory = 'C'; m._modeProp = props.globals.getNode(GPSPath ~ '/mode'); return m; }, _landingCheckTimeout: func { if (pts.Gear.wow[0].getValue() and pts.Velocities.groundspeed.getValue() < 25) { logprint(LOG_INFO, 'GPS saw speed < 25kts on destination runway, end of route.'); me.landingCheck.stop(); # record touch-down time? me.flightplan.finish(); } }, _captureCurrentCourse: func { setprop(GPSPath ~ "/selected-course-deg", getprop(GPSPath ~ "/desired-course-deg")); }, _selectOBSMode: func { setprop(GPSPath ~ "/command", "obs"); }, waypointsChanged: func { }, activated: func { if (!me.flightplan.active) return; logprint(LOG_INFO,'flightplan activated, default GPS to LEG mode'); setprop(GPSPath ~ "/command", "leg"); if (getprop(GPSPath ~ '/wp/wp[1]/from-flag')) { logprint(LOG_INFO, '\tat GPS activation, already passed active WP, sequencing'); me.sequence(); } }, deactivated: func { if (me._modeProp.getValue() == 'leg') { logprint(LOG_INFO, 'flightplan deactivated, default GPS to OBS mode'); me._captureCurrentCourse(); me._selectOBSMode(); } }, endOfFlightPlan: func { if (me._modeProp.getValue() == 'leg') { logprint(LOG_INFO, 'end of flight-plan, switching GPS to OBS mode'); me._captureCurrentCourse(); me._selectOBSMode(); } }, cleared: func { if (!me.flightplan.active) return; if (me._modeProp.getValue() == 'leg') { logprint(LOG_INFO, 'flight-plan cleared, switching GPS to OBS mode'); me._captureCurrentCourse(); me._selectOBSMode(); } }, sequence: func { if (!me.flightplan.active) return; #flightPlanController.autoSequencing(); var mode = me._modeProp.getValue(); if (mode == 'dto') { # direct-to is done, check if we should resume the following leg var index = me.flightplan.indexOfWP(getprop(GPSPath ~ '/wp/wp[1]/latitude-deg'), getprop(GPSPath ~ '/wp/wp[1]/longitude-deg')); if (index >= 0) { logprint(LOG_INFO, "default GPS reached Direct-To, resuming FP leg at " ~ index); me.flightplan.current = index + 1; setprop(GPSPath ~ "/command", "leg"); } else { # revert to OBS mode logprint(LOG_INFO, "default GPS reached Direct-To, resuming to OBS"); me._captureCurrentCourse(); me._selectOBSMode(); } } else if (mode == 'leg') { # standard leq sequencing var nextIndex = me.flightplan.current + 1; if (nextIndex >= me.flightplan.numWaypoints()) { logprint(LOG_INFO, "default GPS sequencing, finishing flightplan"); me.flightplan.finish(); } elsif (me.flightplan.nextWP().wp_type == 'discontinuity') { logprint(LOG_INFO, "default GPS sequencing DISCONTINUITY in flightplan, switching to OBS mode"); # TODO - revert autopilot to hdg / vs me._captureCurrentCourse(); me._selectOBSMode(); } else { logprint(LOG_INFO, "default GPS sequencing to next WP"); me.flightplan.current = nextIndex; } } else { # OBS, do nothing } }, currentWaypointChanged: func { if (!me.flightplan.active) return; if (me.landingCheck != nil) { me.landingCheck.stop(); me.landingCheck = nil; # delete timer } var active = me.flightplan.currentWP(); if (active == nil) return; var activeRunway = active.runway(); # this check is needed to avoid problems with circular routes; when # activating the FP we end up here, and without this check, immediately # detect that we've 'landed' and finish the FP again. if (!pts.Gear.wow[0].getValue() and (activeRunway != nil) and (me.flightplan.destination_runway != nil) and (activeRunway.id == me.flightplan.destination_runway.id)) { me.landingCheck = maketimer(2.0, me, A320GPSDeleagte._landingCheckTimeout); me.landingCheck.start(); } } }; registerFlightPlanDelegate(A320GPSDeleagte.new);