216 lines
8.2 KiB
Text
216 lines
8.2 KiB
Text
|
##########################################################################
|
||
|
# Simple Brake Simulation System
|
||
|
# 2010, Thorsten Brehm
|
||
|
#
|
||
|
# Simple simulation of brake energy absorption and cooling effects.
|
||
|
#
|
||
|
# This module computes (approximates... :-) ) an energy level which
|
||
|
# (faintly) resembles the kinetic energy absorption and cooling effects
|
||
|
# of a brake system. But instead of computing real temperatures, this
|
||
|
# is just meant to distinguish normal energy levels from exceptionally
|
||
|
# high levels. The target is to drive EICAS "brakes overheat" messages
|
||
|
# and gear effects only, to "reward" pilots with exceptionally bad
|
||
|
# landings...
|
||
|
#
|
||
|
# To avoid complicated calculations of different braking effects (roll/air
|
||
|
# drag, reverse thrust etc), we simply assume the brake system to cause a
|
||
|
# fixed deceleration (me.BrakeDecel). With this deceleration we approximate
|
||
|
# the speed difference which would be caused by the brake system alone for
|
||
|
# any given simulation interval. The difference of the kinetic energy level
|
||
|
# at the current speed and the decelerated speed are then added up to the
|
||
|
# total absorbed brake energy.
|
||
|
# Units (knots/lbs/Kg) do not matter much here. Eventually a magic scaling
|
||
|
# divisor is used to scale the output level. Any output > 1 means
|
||
|
# "overheated brakes", any level <=1 means "brake temperature OK".
|
||
|
# No exact science here - but good enough for now :-).
|
||
|
##########################################################################
|
||
|
|
||
|
var BrakeSystem =
|
||
|
{
|
||
|
new : func()
|
||
|
{
|
||
|
var m = { parents : [BrakeSystem]};
|
||
|
# deceleration caused by brakes alone (knots/s2)
|
||
|
m.BrakeDecel = 1.0; # kt/s^2
|
||
|
#m.LBrakeDecel = getprop("systems/hydraulic/brakes/pressure-left-psi") / 1000 * getprop("controls/autobrake/decel-error"); # kt/s^2
|
||
|
#m.RBrakeDecel = getprop("systems/hydraulic/brakes/pressure-right-psi") / 1000 * getprop("controls/autobrake/decel-error"); # kt/s^2
|
||
|
# Higher value means quicker cooling
|
||
|
m.CoolingFactor = 0.005;
|
||
|
# Scaling divisor. Use this to scale the energy output.
|
||
|
# Manually tune this value: a total energy output
|
||
|
# at "/gear/brake-thermal-energy" > 1.0 means overheated brakes,
|
||
|
# anything below <= 1.0 means energy absorbed by brakes is OK.
|
||
|
#m.ScalingDivisor= 700000*450.0;
|
||
|
m.ScalingDivisor= 1;
|
||
|
|
||
|
m.LSmokeActive = 0;
|
||
|
m.LSmokeToggle = 0;
|
||
|
m.RSmokeActive = 0;
|
||
|
m.RSmokeToggle = 0;
|
||
|
m.nCoolFactor = math.ln(1-m.CoolingFactor);
|
||
|
|
||
|
m.reset();
|
||
|
|
||
|
return m;
|
||
|
},
|
||
|
|
||
|
reset : func()
|
||
|
{
|
||
|
# Initial thermal energy
|
||
|
setprop("gear/Lbrake-thermal-energy",0.0);
|
||
|
setprop("gear/Rbrake-thermal-energy",0.0);
|
||
|
setprop("gear/Lbrake-smoke",0);
|
||
|
setprop("gear/Rbrake-smoke",0);
|
||
|
setprop("sim/animation/fire-services",0);
|
||
|
me.LastSimTime = 0.0;
|
||
|
},
|
||
|
|
||
|
# update brake energy
|
||
|
update : func()
|
||
|
{
|
||
|
var CurrentTime = getprop("sim/time/elapsed-sec");
|
||
|
var dt = CurrentTime - me.LastSimTime;
|
||
|
|
||
|
if (dt<1.0)
|
||
|
{
|
||
|
var OnGround = getprop("gear/gear[1]/wow");
|
||
|
var LThermalEnergy = getprop("gear/Lbrake-thermal-energy");
|
||
|
var RThermalEnergy = getprop("gear/Rbrake-thermal-energy");
|
||
|
if (getprop("controls/gear/brake-parking"))
|
||
|
{
|
||
|
var LBrakeLevel=1.0;
|
||
|
var RBrakeLevel=1.0;
|
||
|
var BrakeLevel = (LBrakeLevel + RBrakeLevel)/2;
|
||
|
}
|
||
|
else
|
||
|
var LBrakeLevel = getprop("fdm/jsbsim/fcs/left-brake-cmd-norm");
|
||
|
var RBrakeLevel = getprop("fdm/jsbsim/fcs/right-brake-cmd-norm");
|
||
|
var BrakeLevel = (LBrakeLevel + RBrakeLevel)/2;
|
||
|
if ((OnGround)and(BrakeLevel>0))
|
||
|
{
|
||
|
# absorb more energy
|
||
|
var V1 = getprop("velocities/groundspeed-kt");
|
||
|
var Mass = getprop("fdm/jsbsim/inertia/weight-lbs")/(me.ScalingDivisor*200000000);
|
||
|
# absorb some kinetic energy:
|
||
|
# dE= 1/2 * m * V1^2 - 1/2 * m * V2^2)
|
||
|
var V2_L = V1 - me.BrakeDecel*dt * LBrakeLevel;
|
||
|
var V2_R = V1 - me.BrakeDecel*dt * RBrakeLevel;
|
||
|
# do not absorb more energy when plane is (almost) stopped
|
||
|
if (V2_L>0)
|
||
|
LThermalEnergy += Mass * (V1*V1 - V2_L*V2_L)/2;
|
||
|
if (V2_R>0)
|
||
|
RThermalEnergy += Mass * (V1*V1 - V2_R*V2_R)/2;
|
||
|
}
|
||
|
|
||
|
# cooling effect: reduce thermal energy by factor (1-m.CoolingFactor)^dt
|
||
|
LThermalEnergy = LThermalEnergy * math.exp(me.nCoolFactor * dt);
|
||
|
RThermalEnergy = RThermalEnergy * math.exp(me.nCoolFactor * dt);
|
||
|
|
||
|
setprop("gear/Lbrake-thermal-energy",LThermalEnergy);
|
||
|
setprop("gear/Rbrake-thermal-energy",RThermalEnergy);
|
||
|
|
||
|
if ((LThermalEnergy>1)and(!me.LSmokeActive))
|
||
|
{
|
||
|
# start smoke processing
|
||
|
me.LSmokeActive = 1;
|
||
|
settimer(func { BrakeSys.Lsmoke(); },0);
|
||
|
}
|
||
|
if ((RThermalEnergy>1)and(!me.RSmokeActive))
|
||
|
{
|
||
|
# start smoke processing
|
||
|
me.RSmokeActive = 1;
|
||
|
settimer(func { BrakeSys.Rsmoke(); },0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
me.LastSimTime = CurrentTime;
|
||
|
# 5 updates per second are good enough
|
||
|
settimer(func { BrakeSys.update(); },0.2);
|
||
|
},
|
||
|
|
||
|
# smoke processing
|
||
|
Lsmoke : func()
|
||
|
{
|
||
|
if ((me.LSmokeActive)and(getprop("gear/Lbrake-thermal-energy")>1))
|
||
|
{
|
||
|
# make density of smoke effect depend on energy level
|
||
|
var LSmokeDelay=0;
|
||
|
var LThermalEnergy = getprop("gear/Lbrake-thermal-energy");
|
||
|
if (LThermalEnergy < 1.5)
|
||
|
LSmokeDelay=(1.5-LThermalEnergy);
|
||
|
# No smoke when gear retracted
|
||
|
var LSmokeValue = (getprop("gear/gear[1]/position-norm")>0.5);
|
||
|
# toggle smoke to interpolate different densities
|
||
|
if (LSmokeDelay>0.05)
|
||
|
{
|
||
|
me.LSmokeToggle = !me.LSmokeToggle;
|
||
|
if (!me.LSmokeToggle)
|
||
|
LSmokeValue = 0;
|
||
|
else
|
||
|
LSmokeDelay = 0;
|
||
|
}
|
||
|
setprop("gear/Lbrake-smoke",LSmokeValue);
|
||
|
settimer(func { BrakeSys.Lsmoke(); },LSmokeDelay);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
# stop smoke processing
|
||
|
setprop("gear/Lbrake-smoke",0);
|
||
|
setprop("sim/animation/fire-services",0);
|
||
|
me.LSmokeActive = 0;
|
||
|
}
|
||
|
if (getprop("gear/Lbrake-thermal-energy") > 1.5)
|
||
|
setprop("sim/animation/fire-services",1);
|
||
|
else
|
||
|
setprop("sim/animation/fire-services",0);
|
||
|
},
|
||
|
|
||
|
# smoke processing
|
||
|
Rsmoke : func()
|
||
|
{
|
||
|
if ((me.RSmokeActive)and(getprop("gear/Rbrake-thermal-energy")>1))
|
||
|
{
|
||
|
# make density of smoke effect depend on energy level
|
||
|
var RSmokeDelay=0;
|
||
|
var RThermalEnergy = getprop("gear/Rbrake-thermal-energy");
|
||
|
if (RThermalEnergy < 1.5)
|
||
|
RSmokeDelay=(1.5-RThermalEnergy);
|
||
|
# No smoke when gear retracted
|
||
|
var RSmokeValue = (getprop("gear/gear[2]/position-norm")>0.5);
|
||
|
# toggle smoke to interpolate different densities
|
||
|
if (RSmokeDelay>0.05)
|
||
|
{
|
||
|
me.RSmokeToggle = !me.RSmokeToggle;
|
||
|
if (!me.RSmokeToggle)
|
||
|
RSmokeValue = 0;
|
||
|
else
|
||
|
RSmokeDelay = 0;
|
||
|
}
|
||
|
setprop("gear/Rbrake-smoke",RSmokeValue);
|
||
|
settimer(func { BrakeSys.Rsmoke(); },RSmokeDelay);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
# stop smoke processing
|
||
|
setprop("gear/Rbrake-smoke",0);
|
||
|
me.RSmokeActive = 0;
|
||
|
}
|
||
|
if (getprop("gear/Rbrake-thermal-energy") > 1.5)
|
||
|
setprop("sim/animation/fire-services",1);
|
||
|
else
|
||
|
setprop("sim/animation/fire-services",0);
|
||
|
},
|
||
|
};
|
||
|
|
||
|
var BrakeSys = BrakeSystem.new();
|
||
|
|
||
|
setlistener("sim/signals/fdm-initialized",
|
||
|
# executed on _every_ FDM reset (but not installing new listeners)
|
||
|
func(idle) { BrakeSys.reset(); },
|
||
|
0,0);
|
||
|
|
||
|
settimer(func()
|
||
|
{
|
||
|
BrakeSys.update();
|
||
|
}, 5);
|